• 제목/요약/키워드: Storage capacity of battery

검색결과 234건 처리시간 0.02초

리튬이온전지용 TiO2 나노튜브 음전극 특성 (Anode Properties of TiO2 Nanotube for Lithium-Ion Batteries)

  • 최민규;이영기;김광만
    • Korean Chemical Engineering Research
    • /
    • 제48권3호
    • /
    • pp.283-291
    • /
    • 2010
  • 리튬이온전지의 음전극으로 사용하기 위해 주로 알카리 수열합성법과 열처리에 의해 제조되는 $TiO_2$ 나노튜브의 전기화학적 특성에 관한 연구결과를 조사하여, 그 충방전 특성을 분석하였다. 현재까지 리튬과 $TiO_2$의 전기화학반응으로 생성되는 $Li_xTiO_2$의 이론용량인 $335mAh\;g^{-1}$(x=1)를 초과하는 최대방전용량 $338mAh\;g^{-1}$(x=1.01)을 $TiO_2(B)$ 상을 갖는 나노튜브가 나타내었다. 이것은 리튬의 자가확산이 활성에너지 0.48 eV 정도로 느리므로 이보다 확산거리가 짧도록 $TiO_2$ 나노튜브의 구조를 조정하여 리튬 수송이 원활하도록 하였기 때문이다. 또한 $TiO_2$ 나노튜브 구조체는 벌크상은 물론 표면에서의 뛰어난 이온저장성 때문에 리튬이온전지의 음전극 소재뿐만 아니라 고출력 특성이 필요한 커페시터 소자의 전극소재로도 활용할 수 있다.

40 wt% Ni 촉매에서 바이오가스 중 CO2로부터 메탄제조에 관한 연구: Commercial Catalyst와의 특성 비교분석 (A Study on the Synthesis of CH4 from CO2 of Biogas Using 40 wt% Ni-Mg Catalyst: Characteristic Comparison of Commercial Catalyst and 40 wt% Ni Catalyt)

  • 한단비;백영순
    • 한국수소및신에너지학회논문집
    • /
    • 제32권5호
    • /
    • pp.388-400
    • /
    • 2021
  • Power to gas (P2G) is one of the energy storage technologies that can increase the storage period and storage capacity compared to the existing battery type. One of P2G technology produces hydrogen by decomposing water from renewable energy (electricity) and the other produces CH4 by reacting hydrogen with CO2. This study is an experimental study to produce CH4 by reacting CO2 of biogas with hydrogen using a 40 wt% Ni-Mg-Al catalyst and a commercial catalyst. Catalyst characteristics were analyzed through H2-TPR, XRD, and XPS instruments of 40% Ni catalyst and commercial catalyst. The effect on the CO2 conversion rate and CH4 selectivity was analyzed, and the activities of a 40% Ni catalyst and a commercial catalyst were compared. As a result of experiment, In the case of a 40 wt% catalyst, the maximum CO2 conversion rate showed 77% at the reaction temperature of 400℃. Meanwhile, the commercial catalyst showed a maximum CO2 conversion rate of 60% at 450℃. When 50% of CO was added to the CO2 methanation reaction, the CO2 conversion rate was increased by about 5%. This is considered to be due to the atmosphere in which the CO reaction can occur without the process of converting to CH4 after forming carbon and CO as intermediates in terms of the CO2 mechanism on the catalyst surface.

Biomass Waste, Coffee Grounds-derived Carbon for Lithium Storage

  • Um, Ji Hyun;Kim, Yunok;Ahn, Chi-Yeong;Kim, Jinsoo;Sung, Yung-Eun;Cho, Yong-Hun;Kim, Seung-Soo;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권3호
    • /
    • pp.163-168
    • /
    • 2018
  • Biomass waste-derived carbon is an attractive alternative with environmental benignity to obtain carbon material. In this study, we prepare carbon from coffee grounds as a biomass precursor using a simple, inexpensive, and environmentally friendly method through physical activation using only steam. The coffee-derived carbon, having a micropore-rich structure and a low extent of graphitization of disordered carbon, is developed and directly applied to lithium-ion battery anode material. Compared with the introduction of the Ketjenblack (KB) conducting agent (i.e., coffee-derived carbon with KB), the coffee-derived carbon itself achieves a reversible capacity of ~200 mAh/g (0.54 lithium per 6 carbons) at a current density of 100 mA/g after 100 cycles, along with excellent cycle stability. The origin of highly reversible lithium storage is attributed to the consistent diffusion-controlled intercalation/de-intercalation reaction in cycle life, which suggests that the bulk diffusion of lithium is favorable in the coffee-derived carbon itself, in the absence of a conducting agent. This study presents the preparation of carbon material through physical activation without the use of chemical activation agents and demonstrates an application of coffee-derived carbon in energy storage devices.

리튬 전지에서 산소, 황의 물리화학적 거동 (Physicochemical Behaviors of Oxygen and Sulfur in Li Batteries)

  • 박동원;김진원;김종원;이재영
    • 공업화학
    • /
    • 제23권3호
    • /
    • pp.247-252
    • /
    • 2012
  • 전기자동차, 하이브리드 자동차의 필요성과 스마트 IT 기기의 급속한 발전으로 인한 고용량 고출력 전지의 수요가 급증하고 있다. 현재 상용화 된 리튬이온전지는 기술적 문제에 의해 제한된 에너지 밀도만이 이용되고 있어서 보다 높은 에너지 밀도를 갖는 리튬-황 및 리튬-공기전지 개발이 주목 받고 있다. 새로운 Li 배터리 시스템의 양극물질인 황과 산소는 유사한 물리화학적 특성을 갖고 풍부한 자원 매장량으로 상용화가 어렵지 않을 것으로 전망한다. 따라서 본 총설에서는 리튬-황 및 리튬-공기 전지 시스템의 다공성 구조 양극개발, 양극과 전해질의 계면반응 최적화 및 높은 내구성이 있는 리튬음극 개발과 같은 공통 이슈를 해결하고자 하는 비전을 제시하고자 한다.

Ni-MH 2차전지용 AB5계 수소저장합금의 소결에 따른 전극 특성 (The Electrode Characteristics of the Sintered AB5-type Metal Hydrogen Storage Alloy for Ni-MH Secondary Battery)

  • 장상민;박원;최승준;노학;최전;박충년
    • 한국수소및신에너지학회논문집
    • /
    • 제7권2호
    • /
    • pp.157-164
    • /
    • 1996
  • The AB5-type metal hydride electrodes using $(LM)Ni_{4.49}Co_{0.1}Mn_{0.205}Al_{0.205}$(LM : Lanthaniumrich Mischmetal) alloy powders(${\leq}200$mesh) which were coated with 25wt% copper in an acidic bath were prepared with or without addition of 10wt% PTFE as a binder. Prior to electrochemical measurements, the electrodes were sintered at $40^{\circ}C$ for 1 and 2hrs in vacuum with Mm(mischmetal) and sponge type Ti getters. The properties such as maximum capacity, cycle life and mechanical strength of the negative electrode have been investigated. The surface analysis of the electrode was also obtained before and after charge-discharge cycling using scanning electron microscope(SEM). From the observations of electrochemical behavior, it was found that the sintered electrode shows a lower maximum discharge capacity compared with non-sintered electrode but it shows a better cycle life. For the both electrodes with or without addition of PTFE binder, the values of mechanical strength were obtained, and their values increased with increasing sintering time. However, there is little difference of discharge capacity for both electrodes.

  • PDF

Electrochemical Performance of LiMn2O4 Cathodes in Zn-Containing Aqueous Electrolytes

  • Kamenskii, Mikhail A.;Eliseeva, Svetlana N.;Volkov, Alexey I.;Kondratiev, Veniamin V.
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권2호
    • /
    • pp.177-185
    • /
    • 2022
  • Electrochemical properties of LiMn2O4 cathode were investigated in three types of Zn-containing electrolytes: lithium-zinc sulfate electrolyte (1M ZnSO4 / 2M Li2SO4), zinc sulfate electrolyte (2MZnSO4) and lithium-zinc-manganese sulfate electrolyte (1MZnSO4 / 2MLi2SO4 / 0.1MMnSO4). Cyclic voltammetry measurements demonstrated that LiMn2O4 is electrochemically inactive in pure ZnSO4 electrolyte after initial oxidation. The effect of manganese (II) additive in the zinc-manganese sulfate electrolyte on the electrochemical performance was analyzed. The initial capacity of LiMn2O4 is higher in presence of MnSO4 (140 mAh g-1 in 1 M ZnSO4 / 2 M Li2SO4 / 0.1 M MnSO4 and 120 mAh g-1 in 1 M ZnSO4 / 2MLi2SO4). The capacity increase can be explained by the electrodeposition of MnOx layer on the electrode surface. Structural characterization of postmortem electrodes with use of XRD and EDX analysis confirmed that partially formed in pure ZnSO4 electrolyte Zn-containing phase leads to fast capacity fading which is probably related to blocked electroactive sites.

Amorphous Vanadium Titanates as a Negative Electrode for Lithium-ion Batteries

  • Lee, Jeong Beom;Chae, Oh. B.;Chae, Seulki;Ryu, Ji Heon;Oh, Seung M.
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권4호
    • /
    • pp.306-315
    • /
    • 2016
  • Amorphous vanadium titanates (aVTOs) are examined for use as a negative electrode in lithium-ion batteries. These amorphous mixed oxides are synthesized in nanosized particles (<100 nm) and flocculated to form secondary particles. The $V^{5+}$ ions in aVTO are found to occupy tetrahedral sites, whereas the $Ti^{4+}$ ions show fivefold coordination. Both are uniformly dispersed at the atomic scale in the amorphous oxide matrix, which has abundant structural defects. The first reversible capacity of an aVTO electrode ($295mAhg^{-1}$) is larger than that observed for a physically mixed electrode (1:2 $aV_2O_5$ | $aTiO_2$, $245mAhg^{-1}$). The discrepancy seems to be due to the unique four-coordinated $V^{5+}$ ions in aVTO, which either are more electron-accepting or generate more structural defects that serve as $Li^+$ storage sites. Coin-type Li/aVTO cells show a large irreversible capacity in the first cycle. When they are prepared under nitrogen (aVTO-N), the population of surface hydroxyl groups is greatly reduced. These groups irreversibly produce highly resistive inorganic compounds (LiOH and $Li_2O$), leading to increased irreversible capacity and electrode resistance. As a result, the material prepared under nitrogen shows higher Coulombic efficiency and rate capability.

Effect of Pre-Cycling Rate on the Passivating Ability of Surface Films on Li4Ti5O12 Electrodes

  • Jung, Jiwon;Hah, Hoe Jin;Lee, Tae jin;Lee, Jae Gil;Lee, Jeong Beom;Kim, Jongjung;Soon, Jiyong;Ryu, Ji Heon;Kim, Jae Jeong;Oh, Seung M.
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권1호
    • /
    • pp.15-24
    • /
    • 2017
  • A comparative study was performed on the passivating abilities of surface films generated on lithium titanate (LTO; $Li_4Ti_5O_{12}$) electrodes during pre-cycling at two different rates. The surface film deposited at a faster pre-cycling rate (i.e., 0.5 C) is irregularly shaped and unevenly covers the LTO electrode. Owing to the incomplete coverage of the protective film, this LTO electrode exhibits poor passivating ability. Additional electrolyte decomposition and concomitant film deposition occur during subsequent charge/discharge cycles. As a result of the thick surface film, severe cell polarization occurs and eventually causes cell failure. However, pre-cycling the Li/LTO cell at a slower rate (0.1 C) improves cell polarization and capacity retention; this occurs because the surface film uniformly covers the LTO electrode and provides strong passivation. Accordingly, there is no significant film deposition during subsequent charge/discharge cycling. Additionally, self-discharge is reduced during high-temperature storage.

TEGDME 액체 전해질을 사용한 $Li/MoS_2$ 전지의 충.방전 특성 (The Charge-Discharge Performance of $Li/MoS_2$ Battery with liquid Electrolyte of Tetra(ethylene glycol] Dimethyl Ether[TEGDME])

  • 권정희;류호석;김기원;안주현;정용수;이건환;안효준
    • 한국수소및신에너지학회논문집
    • /
    • 제20권3호
    • /
    • pp.238-244
    • /
    • 2009
  • We investigated the electrochemical properties of lithium/molybdenum sulfide(Li/MoS$_2$) using tetra (ethylene glycol) dimethyl ether(TEGDME) electrolyte. The Li/TEGDME/MoS$_2$ cell showed the first discharge capacity of 288mAhg$^{-1}$. From the XRD, SEM results of the MOS$_2$ electrode in various cut-off voltage during charge-discharge process, MoS$_2$ partly changed into Li$_2$S and Mo during discharge and Li$_2$S partly recovered into MOS$_2$ and Li during charge. Full charged MOS$_2$ electrode showed lump shape of big size, which might be related to agglomerate of MoS$_2$ particles. Therefore, the degradation might be related to decrease of active material for electrochemical reaction by agglomeration of MOS$_2$.

Electrochemical Properties of 0.3Li2MnO3·0.7LiMn0.55Ni0.30Co0.15O2 Electrode Containing VGCF for Lithium Ion Battery

  • Kim, Jeong-Min;Jeong, Minchan;Jin, Bong-Soo;Kim, Hyun-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • 제5권1호
    • /
    • pp.32-36
    • /
    • 2014
  • The $0.3Li_2MnO_3{\cdot}0.7LiMn_{0.55}Ni_{0.30}Co_{0.15}O_2$ cathode material was prepared via a co-precipitation method. The vapor grown carbon fiber (VGCF) was used as a conductive material and its effects on electrochemical properties of the $0.3Li_2MnO_3{\cdot}0.7LiMn_{0.55}Ni_{0.30}Co_{0.15}O_2$ cathode material were investigated. From the XRD pattern, the typical complex layered structure was confirmed and a solid solution between $Li_2MnO_3$ and $LiMO_2$ (M = Ni, Co and Mn) was formed without any secondary phases. The VGCF was properly distributed between cathode materials and conductive sources by a FE-SEM. In voltage profiles, the electrode with VGCF showed higher discharge capacity than the pristine electrode. At a 5C rate, 146 mAh/g was obtained compared with 232 mAh/g at initial discharge in the electrode with VGCF. Furthermore, the impedance of the electrode with VGCF did not changed much around $9-10{\Omega}$ while the pristine electrode increased from 21.5${\Omega}$ to $46.3{\Omega}$ after the $30^{th}$ charge/discharge cycling.