• 제목/요약/키워드: Storage battery

검색결과 887건 처리시간 0.03초

연료전지 기반 에너지저장 시스템의 환경 전과정평가 및 에너지 효율성 분석 (Life Cycle Assessment (LCA) and Energy Efficiency Analysis of Fuel Cell Based Energy Storage System (ESS))

  • 김형석;홍석진;허탁
    • 한국수소및신에너지학회논문집
    • /
    • 제28권2호
    • /
    • pp.156-165
    • /
    • 2017
  • This study quantitatively assessed the environmental impacts of fuel cell (FC) systems by performing life cycle assessment (LCA) and analyzed their energy efficiencies based on energy return on investment (EROI) and electrical energy stored on investment (ESOI). Molten carbonate fuel cell (MCFC) system and polymer electrolyte membrane fuel cell (PEMFC) system were selected as the fuel cell systems. Five different paths to produce hydrogen ($H_2$) as fuel such as natural gas steam reforming (NGSR), centralized naptha SR (NSR(C)), NSR station (NSR(S)), liquified petroleum gas SR (LPGSR), water electrolysis (WE) were each applied to the FCs. The environmental impacts and the energy efficiencies of the FCs were compared with rechargeable batteries such as $LiFePO_4$ (LFP) and Nickel-metal hydride (Ni-MH). The LCA results show that MCFC_NSR(C) and PEMFC_NSR(C) have the lowest global warming potential (GWP) with 6.23E-02 kg $CO_2$ eq./MJ electricity and 6.84E-02 kg $CO_2$ eq./MJ electricity, respectively. For the impact category of abiotic resource depletion potential (ADP), MCFC_NGSR(S) and PEMFC_NGSR(S) show the lowest impacts of 7.42E-01 g Sb eq./MJ electricity and 7.19E-01 g Sb eq./MJ electricity, respectively. And, the energy efficiencies of the FCs are higher than those of the rechargeable batteries except for the case of hydrogen produced by WE.

전도 냉각형 10kJ 고온 초전도 에너지 저장장치의 열 부하 특성 해석 (Heat load characteristic analysis of conduction cooled 10kJ HTS SMES)

  • 김광민;김아롱;김진근;박해용;박민원;유인근;김석호;심기덕
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.2219_2220
    • /
    • 2009
  • The characteristics of the Superconducting Magnetic Energy Storage (SMES) system are faster response, longer life time, more economical, and environment friendly than other Uninterruptible Power Supply (UPS) using battery. Fast charge and discharge time of SMES system can provide powerful performance of improving power quality in the grid. In order to demonstrate the effectiveness of SMES, the authors make a 10kJ SMES system for connection with RTDS (Real Time Digital Simulator). Because the characteristics of superconducting magnet are very important in SMES system, the necessary items such as thermal characteristic, mechanical stress and protection circuit should be considered. In this paper, the authors experimented thermal characteristics of the 10kJ SMES system. The experiment was accomplished using a simulation coils made of aluminium. It has same dimension of the 10kJ class HTS SMES coil. The coil was cooled with GM (Gifford -McMahon) cryocooler through the OFHC (Oxgen Free High thermal Conductivity) conduction bar. The test results of cool down and heat loads characteristics of the simulation coils are described in detail.

  • PDF

연폭로 남자 근로자들의 신기능 지표에 관한 연구 (A study on renal function indices in lead exposed male workers)

  • 이성수;황보영;안규동;이병국;김정순
    • Journal of Preventive Medicine and Public Health
    • /
    • 제28권2호
    • /
    • pp.421-432
    • /
    • 1995
  • The influence of lead exposure on renal function was studied. Eighty nine lead exposed workers who worked in 2 storage battery factories, and seventy one control workers were chosen for this study. Blood lead(PbB) and zinc protoporphyrin in whole blood(ZPP) were selected as indicators of lead exposure. As indicators of renal function, urinary N-acetyl-$\beta$-D-glucosaminidase(NAG), blood urea nitrogen(BUN), serum creatinine(S-Cr), total protein in urine(U-TP),and serum uric acid(S-Ua) were selected. The results obtained were as follows: 1. While the mean values of lead exposure indicators of lead workers were significantly different from non-exposed ones, the mean values of NAG, U-TP, BUN and S-Cr of renal function indicators of exposed were also significantly different from non-exposed but their mean values were all within normal limits. 2. BUN, logarithmic U-TP, logarithmic NAG and S-Cr showed statistically significant correlation with PbB. 3. The proportion of workers whose values of renal function indicators were over the normal limits(NAG7.5 U/g Cr ; U-TP10.9 mg/dl ; BUN20 mg/dl ; S-Crl.2 mg/dl ; S-Ua7.0 mg/dl) by the level of lead absorption in terms of PbB and ZPP were calculated. The proportion of workers with over the normal limits of U-TP among total workers showed the dose-response relationship. When age is adjusted, U-TP showed significantly strong dose-response relationship with the level of PbB and ZPP.

  • PDF

SVDD기법을 이용한 하이브리드 전기자동차 충-방전시스템의 고장검출 알고리듬 (Fault Detection Algorithm of Charge-discharge System of Hybrid Electric Vehicle Using SVDD)

  • 나상건;양인범;허훈
    • 한국소음진동공학회논문집
    • /
    • 제21권11호
    • /
    • pp.997-1004
    • /
    • 2011
  • A fault detection algorithm of a charge and discharge system to ensure the safe use of hybrid electric vehicle is proposed in this paper. This algorithm can be used as a complementary way to existing fault detection technique for a charge and discharge system. The proposed algorithm uses a SVDD technique, which additionally utilizes two methods for learning a large amount of data; one is to incrementally learn a large amount of data, the other one is to remove the data that does not affect the next learning using a new data reduction technique. Removal of data is selected by using lines connecting support vectors. In the proposed method, the data processing speed is drastically improved and the storage space used is remarkably reduced than the conventional methods using the SVDD technique only. A battery data and speed data of a commercial hybrid electrical vehicle are utilized in this study. A fault boundary is produced via SVDD techniques using the input and output in normal operation of the system without using mathematical modeling. A fault detection simulation is performed using both an artificial fault data and the obtained fault boundary via SVDD techniques. In the fault detection simulation, fault detection time via proposed algorithm is compared with that of the peak-peak method. Also the proposed algorithm is revealed to detect fault in the region where conventional peak-peak method is never able to do.

에너지 하베스팅 및 모니터링 기반의 고로쇠 수액 통합 관리 시스템 구현 (A Implementation of Acer Pictum Sap Integrated Management System based on Energy Harvesting and Monitoring System)

  • 정세훈;조경호;김준영;박준;김종찬;최수임;심춘보
    • 한국멀티미디어학회논문지
    • /
    • 제22권11호
    • /
    • pp.1324-1337
    • /
    • 2019
  • This study set out to investigate an energy harvesting device to ensure stable energy supply to batteries and data collection devices and a monitoring system for acer pictum sap to check collected data. Acer pictum sap farmers have written down weather information and yield of acer pictum sap manually for data storage. Since the job is done manually, there are many missing values in their data. In addition, it is not easy to manage batteries due to the characteristics of the areas where acer pictum sap is collected. The present study thus decided to build an energy harvesting device based on new renewable energy to ensure stable energy supply by taking into consideration power load, daily power consumption, and number of days with no sunshine for various devices. For a monitoring system, the investigator proposed a JSP-based web page to monitor temperature, humidity, volume of collected water, and battery state in real time. The proposed energy harvesting device was applied to reduce missing values in data. It promoted stable energy supply to the batteries and data collection devices, reducing the percentage of missing values in data from 30.55% to 0%.

Development and Performance of a Hand-Held CZT Detector for In-Situ Measurements at the Emergency Response

  • Ji, Young-Yong;Chung, Kun Ho;Kim, Chang-Jong;Yoon, Jin;Lee, Wanno;Choi, Geun-Sik;Kang, Mun Ja
    • Journal of Radiation Protection and Research
    • /
    • 제41권2호
    • /
    • pp.87-91
    • /
    • 2016
  • Background: A hand-held detector for an emergency response was developed for nuclide identification and to estimate the information of the ambient dose rate in the scene of an accident as well as the radioactivity of the contaminants. Materials and Methods: To achieve this, the most suitable sensor was first selected as a cadmium zinc telluride (CZT) semiconductor and the signal processing unit from a sensor and the signal discrimination and storage unit were successfully manufactured on a printed circuit board. Results and Discussion: The performance of the developed signal processing unit was then evaluated to have an energy resolution of about 14 keV at 662 keV. The system control unit was also designed to operate the CZT detector, monitor the detector, battery, and interface status, and check and transmit the measured results of the ambient dose rate and radioactivity. In addition, a collimator, which can control the inner radius, and the airborne dust sampler, which consists of an air filter and charcoal filter, were developed and mounted to the developed CZT detector for the quick and efficient response of a nuclear accident. Conclusion: The hand-held CZT detector was developed to make the in-situ gamma-ray spectrometry and its performance was checked to have a good energy resolution. In addition, the collimator and the airborne dust sampler were developed and mounted to the developed CZT detector for a quick and efficient response to a nuclear accident.

연 노출 근로자들의 혈장 δ - aminolevulinic acid 량과 연 노출 지표들과의 관련성 (The Relationships between Plasma δ - aminolevulinic acid Concentration and Lead Exposure Indices in Lead Workers)

  • 김진호;안규동;이성수;황규윤;김용배;이병국
    • 한국산업보건학회지
    • /
    • 제10권2호
    • /
    • pp.165-172
    • /
    • 2000
  • This study was carried out to investigate relationship between plasma $\delta$ - aminolevulinic acid (ALAP) and lead exposure indices in exposure to lead. The subjects were 218 male workers in 2 storage battery companies and 2 secondary smelting companies. Blood lead(PbB), blood zinc-protoporphyrin( ZPP), urinary $\delta$ - aminolevulinic acid (ALAU), hemoglobin(Hb), and hematocrit(Hct) were measured as lead exposure indices. The results were as follows, 1. The means of blood lead and blood ZPP concentration of subjects were $27.2{\pm}14.0{\mu}g/d{\ell}$ and $55.1{\pm}47.6{\mu}g/d{\ell}$, respectively. The means of plasma $\delta$ - ALA and urinary $\delta$ - ALA concentration were $18.9{\pm}25.1{\mu}g/d{\ell}$ and $2.1{\pm}4.6mg/{\ell}$, respectively. 2. The concentration of ALAP was $11.2{\mu}g/{\ell}$ for below $20{\mu}g/d{\ell}$ PbB, $12.8{\mu}g/{\ell}$ for from $21-40{\mu}g/d{\ell}$ PbB, and $51.2{\mu}g/{\ell}$ for over $40{\mu}g/d{\ell}$ PbB, respectively. 3. ALAP was significantly correlated with ALAU(r=0.829, p<0.01), ZPP(r=0.724, p<0.01) and PbB(r=0.552, p<0.01).

  • PDF

리튬이온 전지용 카본(MCMB) 부극재료의 전지반응 특성 (A Study on the Characteristics of Cell Reaction for the MCMB Carbon as Anode in Li-ion Batteries)

  • 박영태;류호진;김정식
    • 한국세라믹학회지
    • /
    • 제36권2호
    • /
    • pp.172-177
    • /
    • 1999
  • 흑연 및 카본재료는 알칼리 금속을 intercalation/de-intercalation 시킬수 있는 특성을 지니고 있으며, 또한 Li-intercalated carbon의 화학 potential이 Li 금속에 가까운 낮은 값을 지닌 특성으로 리튬 이차전지의 anode 전극재료로서 널리 쓰일 가능성이 매우 크다. 본 연구에서는 카본재료 중 mesocarbon microbeads (MCMB)를 리튬 이차전지의 anode 전극재료로 사용하여 전지반응을 수행하고, 전극의 충.방 전 특성과 전극계면 반응특성에 대하여 연구하였다. 즉, Li/carbon(MCMB) 전지 cell를 제작하고 전해질과 전극계면에서 일어나는 전기화학 반응특성을 충.방 전 시험, Potentionat/Galvanostat 시험, FT-IR 분석, XRD 및 SED 분석에 의하여 고찰하였다. 전지반응이 진행되면서 전극과 전해질 계면에서 고체상태의 부동태 막 (passivation film)이 형성되었으며, 일단 형성된 막은 전해질 내에 용해되지 않고 충.방 전 횟수가 증가하면서 두께가 증가되었다. 또한, 이러한 전극 계면에서 형성된 부동태 막과 중전용량과의 관계에 대하여 고찰하였다.

  • PDF

The Routing Algorithm for Wireless Sensor Networks with Random Mobile Nodes

  • Yun, Dai Yeol;Jung, Kye-Dong;Lee, Jong-Yong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제9권4호
    • /
    • pp.38-43
    • /
    • 2017
  • Sensor Networks (WSNs) can be defined as a self-configured and infrastructure-less wireless networks to monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants and to cooperatively pass their data through the network to a main location or base-station where the data can be observed and analyzed. Typically a wireless sensor network contains hundreds of thousands of sensor nodes. The sensor nodes can communicate among themselves using radio signals. A wireless sensor node is equipped with sensing and computing devices, radio transceivers and power components. The individual nodes in a wireless sensor network (WSN) are inherently resource constrained: they have limited processing speed, storage capacity, communication bandwidth and limited-battery power. At present time, most of the research on WSNs has concentrated on the design of energy- and computationally efficient algorithms and protocols In order to extend the network life-time, in this paper we are looking into a routing protocol, especially LEACH and LEACH-related protocol. LEACH protocol is a representative routing protocol and improves overall network energy efficiency by allowing all nodes to be selected to the cluster head evenly once in a periodic manner. In LEACH, in case of movement of sensor nodes, there is a problem that the data transmission success rate decreases. In order to overcome LEACH's nodes movements, LEACH-Mobile protocol had proposed. But energy consumption increased because it consumes more energy to recognize which nodes moves and re-transfer data. In this paper we propose the new routing protocol considering nodes' mobility. In order to simulate the proposed protocol, we make a scenario, nodes' movements randomly and compared with the LEACH-Mobile protocol.

Ni-MH 2차전지용 AB5계 수소저장합금의 소결에 따른 전극 특성 (The Electrode Characteristics of the Sintered AB5-type Metal Hydrogen Storage Alloy for Ni-MH Secondary Battery)

  • 장상민;박원;최승준;노학;최전;박충년
    • 한국수소및신에너지학회논문집
    • /
    • 제7권2호
    • /
    • pp.157-164
    • /
    • 1996
  • The AB5-type metal hydride electrodes using $(LM)Ni_{4.49}Co_{0.1}Mn_{0.205}Al_{0.205}$(LM : Lanthaniumrich Mischmetal) alloy powders(${\leq}200$mesh) which were coated with 25wt% copper in an acidic bath were prepared with or without addition of 10wt% PTFE as a binder. Prior to electrochemical measurements, the electrodes were sintered at $40^{\circ}C$ for 1 and 2hrs in vacuum with Mm(mischmetal) and sponge type Ti getters. The properties such as maximum capacity, cycle life and mechanical strength of the negative electrode have been investigated. The surface analysis of the electrode was also obtained before and after charge-discharge cycling using scanning electron microscope(SEM). From the observations of electrochemical behavior, it was found that the sintered electrode shows a lower maximum discharge capacity compared with non-sintered electrode but it shows a better cycle life. For the both electrodes with or without addition of PTFE binder, the values of mechanical strength were obtained, and their values increased with increasing sintering time. However, there is little difference of discharge capacity for both electrodes.

  • PDF