This study was carried out to evaluate the microbiological quality of poultry carcasses at different slaughtering process in large (>50,000 chicken/day) and small (<30,000 chicken/day) scale slaughtering houses. Whole bird rinse technique was used to analyze the incidence of microorganisms on poultry carcasses in each process of before visceration, after evisceration, after final wash, after main chilling and in cold room. In summer time, small scale slaughterhouse showed lower incidence of aerobic microorganisms (10
NIST(National Institute of Standards and Technology) has recently published SP 800-90B second draft which is the document for evaluating security of entropy source, a key element of a cryptographic random number generator(RNG), and provided a tool implemented on Python code. In SP 800-90B, the security evaluation of the entropy sources is a process of estimating min-entropy by several estimators. The process of estimating min-entropy is divided into IID track and non-IID track. In IID track, the entropy sources are estimated only from MCV estimator. In non-IID Track, the entropy sources are estimated from 10 estimators including MCV estimator. The running time of the NIST's tool in non-IID track is approximately 20 minutes and the memory usage is over 5.5 GB. For evaluation agencies that have to perform repeatedly evaluations on various samples, and developers or researchers who have to perform experiments in various environments, it may be inconvenient to estimate entropy using the tool and depending on the environment, it may be impossible to execute. In this paper, we propose high-speed implementations and an efficient memory usage technique for min-entropy estimation algorithm of SP 800-90B. Our major achievements are the three improved speed and efficient memory usage reduction methods which are the method applying advantages of C++ code for improving speed of MultiMCW estimator, the method effectively reducing the memory and improving speed of MultiMMC by rebuilding the data storage structure, and the method improving the speed of LZ78Y by rebuilding the data structure. The tool applied our proposed methods is 14 times faster and saves 13 times more memory usage than NIST's tool.
Agricultural reservoirs are an important water resource nationwide and vulnerable to abnormal climate effects such as drought caused by climate change. Therefore, it is required enhanced management for appropriate operation. Although water-level tracking is necessary through continuous monitoring, it is challenging to measure and observe on-site due to practical problems. This study presents an objective comparison between multiple AI models for water-body extraction using radar images that have the advantages of wide coverage, and frequent revisit time. The proposed methods in this study used Sentinel-1 Synthetic Aperture Radar (SAR) images, and unlike common methods of water extraction based on optical images, they are suitable for long-term monitoring because they are less affected by the weather conditions. We built four AI models such as Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), and Automated Machine Learning (AutoML) using drone images, sentinel-1 SAR and DSM data. There are total of 22 reservoirs of less than 1 million tons for the study, including small and medium-sized reservoirs with an effective storage capacity of less than 300,000 tons. 45 images from 22 reservoirs were used for model training and verification, and the results show that the AutoML model was 0.01 to 0.03 better in the water Intersection over Union (IoU) than the other three models, with Accuracy=0.92 and mIoU=0.81 in a test. As the result, AutoML performed as well as the classical machine learning methods and it is expected that the applicability of the water-body extraction technique by AutoML to monitor reservoirs automatically.
The LID technique began to be applied in Korea after 2009, and LID facilities are installed and operated for rainwater management in business districts such as the Ministry of Environment, the Ministry of Land, Infrastructure and Transport, and LH Corporation, public institutions, commercial land, housing, parks, and schools. However, looking at domestic cases, the application cases and operation periods are insufficient compared to those outside the country, so appropriate design standards and measures for operation and maintenance are insufficient. In particular, LID facilities constructed using LID techniques need to maintain the environment inside LID facilities because hydrological and environmental effects are expressed by material circulation and energy flow. The LID facility is designed with the treatment capacity planned for the water circulation target, and the proper maintenance, vegetation, and soil conditions are periodically identified, and the efficiency is maintained as much as possible. In other words, the soil created in LID is a very important design element because LID facilities are expected to have effects such as water pollution reduction, flood reduction, water resource acquisition, and temperature reduction while increasing water storage and penetration capacity through water circulation construction. In order to maintain and manage the functions of LID facilities accurately, the current state of the facilities and the cycle of replacement and maintenance should be accurately known through various quantitative data such as soil contamination, snow removal effects, and vegetation criteria. This study was conducted to investigate the current status of LID facilities installed in Korea from 2009 to 2020, and analyze soil changes through the continuity and current status of LID facilities applied over the past 10 years after collecting soil samples from the soil layer. Through analysis of Saturn, organic matter, hardness, water contents, pH, electrical conductivity, and salt, some vegetation-type LID facilities more than 5 to 7 years after construction showed results corresponding to the lower grade of landscape design. Facilities below the lower level can be recognized as a point of time when maintenance is necessary in a state that may cause problems in soil permeability and vegetation growth. Accordingly, it was found that LID facilities should be managed through soil replacement and replacement.
Understanding the trade-off effect in ecosystem services and measuring the interrelationships between services are crucial for managing limited environmental resources. Accordingly, in this study, we identified the dominant trends and increases and decreases in ecosystem services derived from changes in land cover over about 30 years and tracked changes in the relationships between ecosystem services that occurred over time. Through it, we determined the relationship between land cover changes and ecosystem service changes, as well as the distinct characteristics of service changes in different areas. The research primarily utilized the InVEST model, an ecosystem service assessment model. After standardizing the evaluation results between 0 and 1, it went through principal component analysis, a dimensionality reduction technique, to observe the time-series changes and understand the relationships between the services. According to the research results, the area of urbanized regions dramatically increased between 1989 and 2019, while forests showed a significant increase between 2009 and 2019. Between 1989 and 2019, the national ecosystem service supply witnessed a 13.9% decrease in water supply, a 10.5% decrease in nitrogen retention, a 2.6% increase in phosphorus retention, a 0.9% decrease in carbon storage, a 1.2% increase in air purification, and a 3.4% decrease in habitat quality. Over the past 30 years, South Korea experienced an increase in urbanized areas, a decrease in agricultural land, and an increase in forests, resulting in a trade-off effect between phosphorus retention and habitat quality. This study concluded that South Korea's environment management policies contribute to improving ecosystem quality, which has declined due to urbanization, and maximizing ecosystem services. These findings can help policymakers establish and implement forestry policies focusing on sustainable environmental conservation and ecosystem service provision.
It has been known for a long time that gonadotropins and steroid hormones play a pivotal role in a series of reproductive biological phenomena including the maturation of ovarian follicles and oocytes, ovulation and implantation, maintenance of pregnancy and fetal growth & development, parturition and mammary development and lactation. Recent investigations, however, have elucidated that in addition to these classic hormones, multiple growth factors also are involved in these phenomena. Most growth factors in reproductive organs mediate the actions of gonadotropins and steroid hormones or synergize with them in an autocrine/paracrine manner. The insulin-like growth factor(IGF) system, which is one of the most actively investigated areas lately in the reproductive organs, has been found to have important roles in a wide gamut of reproductive phenomena. In the present communication, published literature pertaining to the intrauterine IGF system will be reviewed preceded by general information of the IGF system. The IGF family comprises of IGF-I & IGF-II ligands, two types of IGF receptors and six classes of IGF-binding proteins(IGFBPs) that are known to date. IGF-I and IGF-II peptides, which are structurally homologous to proinsulin, possess the insulin-like activity including the stimulatory effect of glucose and amino acid transport. Besides, IGFs as mitogens stimulate cell division, and also play a role in cellular differentiation and functions in a variety of cell lines. IGFs are expressed mainly in the liver and messenchymal cells, and act on almost all types of tissues in an autocrine/paracrine as well as endocrine mode. There are two types of IGF receptors. Type I IGF receptors, which are tyrosine kinase receptors having high-affinity for IGF-I and IGF-II, mediate almost all the IGF actions that are described above. Type II IGF receptors or IGF-II/mannose-6-phosphate receptors have two distinct binding sites; the IGF-II binding site exhibits a high affinity only for IGF-II. The principal role of the type II IGF receptor is to destroy IGF-II by targeting the ligand to the lysosome. IGFs in biological fluids are mostly bound to IGFBP. IGFBPs, in general, are IGF storage/carrier proteins or modulators of IGF actions; however, as for distinct roles for individual IGFBPs, only limited information is available. IGFBPs inhibit IGF actions under most in vitro situations, seemingly because affinities of IGFBPs for IGFs are greater than those of IGF receptors. How IGF is released from IGFBP to reach IGF receptors is not known; however, various IGFBP protease activities that are present in blood and interstitial fluids are believed to play an important role in the process of IGF release from the IGFBP. According to latest reports, there is evidence that under certain in vitro circumstances, IGFBP-1, -3, -5 have their own biological activities independent of the IGF. This may add another dimension of complexity of the already complicated IGF system. Messenger ribonucleic acids and proteins of the IGF family members are expressed in the uterine tissue and conceptus of the primates, rodents and farm animals to play important roles in growth and development of the uterus and fetus. Expression of the uterine IGF system is regulated by gonadal hormones and local regulatory substances with temporal and spatial specificities. Locally expressed IGFs and IGFBPs act on the uterine tissue in an autocrine/paracrine manner, or are secreted into the uterine lumen to participate in conceptus growth and development. Conceptus also expresses the IGF system beginning from the peri-implantation period. When an IGF family member is expressed in the conceptus, however, is determined by the presence or absence of maternally inherited mRNAs, genetic programming of the conceptus itself and an interaction with the maternal tissue. The site of IGF action also follows temporal (physiological status) and spatial specificities. These facts that expression of the IGF system is temporally and spatially regulated support indirectly a hypothesis that IGFs play a role in conceptus growth and development. Uterine and conceptus-derived IGFs stimulate cell division and differentiation, glucose and amino acid transport, general protein synthesis and the biosynthesis of mammotropic hormones including placental lactogen and prolactin, and also play a role in steroidogenesis. The suggested role for IGFs in conceptus growth and development has been proven by the result of IGF-I, IGF-II or IGF receptor gene disruption(targeting) of murine embryos by the homologous recombination technique. Mice carrying a null mutation for IGF-I and/or IGF-II or type I IGF receptor undergo delayed prenatal and postnatal growth and development with 30-60% normal weights at birth. Moreover, mice lacking the type I IGF receptor or IGF-I plus IGF-II die soon after birth. Intrauterine IGFBPs generally are believed to sequester IGF ligands within the uterus or to play a role of negative regulators of IGF actions by inhibiting IGF binding to cognate receptors. However, when it is taken into account that IGFBP-1 is expressed and secreted in primate uteri in amounts assessedly far exceeding those of local IGFs and that IGFBP-1 is one of the major secretory proteins of the primate decidua, the possibility that this IGFBP may have its own biological activity independent of IGF cannot be excluded. Evidently, elucidating the exact role of each IGFBP is an essential step into understanding the whole IGF system. As such, further research in this area is awaited with a lot of anticipation and attention.
The relative state of human iron storage may be ascertained more reliably through determination of the serum iron, iron binding capacity, transferrin saturation and absorption of radioactive iron in conjunction with studies of red cell morphology than from the study of red cell morphology alone. Recent investigations have shown that there is an increase in red cell protoporphyrin concentration in iron deficiency anemia. The significance of the red cell protoporphyrin has been discussed greatly during the years since its discovery. Two of the main factors which appear to influence the amaunt of protoporphyrin are increased erythropoiesis and factors interfering with the utilization of iron in the synthesis of hemoglobin, and iron deficiency. Recently Heller et al. have described a simplified method for blood protoporphyrin assay and this technique could be used assess nutritional iron status, wherein even minor insufficiencies are detectable as increased protoporphyrin concentrations. Based on the evaluation of the relationship between nutritional iron status and red cell protoporphyrin as an index suitable for the detection of the iron deficiency is described in this paper. RESULTS 1. Hemoglobin Concentrations and Anthropometric Measurements. The mean and standard deviations of the various anthropometric measurements of different age and sex groups are shown in table 1. There measurements have been compared with the Korean Standard. In the absence of local standards for arm circumference and skin-fold thickness over triceps, they have been compared with the standard from Jelliffe. Table 2,3, and 4 give anthropometric measurements and frequency (%) of anemia in children surveyed. The mean height of the children studid was 10 to 20 percent; below the Korean Standard. The distribution of height below 80 percent of the Standard was 21.2 percent, however, among anemic group this percentage was 27.7 percent. In general, the mean weight of the children was 10 to 15 percent below the Korean Standard. The percentage of children with weight less than 80 percent of the Standard was about 35 percent. But in the anemic group of the children, this percentage was 44 percent. The mean arm circumference was about 15 percent lower than the Jelliffe's standard. 61.2 percent of the children had values of arm circumference below 80 percent of the standard. Children with low hemoglobin levels, this percentage was 80 percent. The mean skinfold thickness over the triceps of the children studied was about 25 Percent lower than the Jelliffe's standard and 61.2 percent of the children had the value less than 80 percent of the standard. Among anemic children, this percentage was 70.8%. As may be seen from table 5, the mean hemoglobin concentration of the total group was 11.3g/100ml. Hemoglobin concentration was less than 11.0g/100ml. in 65(36.5%) of the 178 children. The degree of anemia in most of these children was mild with a hemoglobin level of less than 8.0g/100ml. found in only one child. In general, the prevalence of anemia was high in female children than male and decreased its frequency with increasing age. Relatively close relationship was observed between hemoglobin level and anthrophometric measurements especially high between arm circumference and skinfold thickness and hemoglobin but very low in height and low in weight and hemoglobin level, estimated by chi-square value. II. Serum iron, Transferrin saturation (1) Serum iron, and transferrin saturation Serum iron, transferrin saturation and red cell protoporphyrin concentrations were estimated in sub-sample of 84 children from 1 to 6 years and 24 older children between 7 and 13 years of age. The findings are presented in table 6. The mean serum iron concentration of the total group was 59ug/100ml. However, the level incrased with age from 36.6ug/100ml. (1-3years) to 80.8ug/100ml. (7-13 years). 60 percent of these children had a serum iron level less than 50ug/10ml. in the 1-3 years age group and 31.4 percent for 4-6 years group. These contrast with the finding of 12.5 percent anemic children in the 7-13 years age group. The mean transferrin saturation for the total group was 18.1 percent and frequency of anemia by transferrin saturation was observed same pattern as serum iron concentration. (2) Red cell protoporphyrin concentrations. (a) Red cell protoporphrin levels of children: Red cell protoporphyrin and other biochemical data are shown in table 4. The mean concentration in red cell of all children was fround 46.3ug/100ml. RBC. and differences with age groups were observed; in the age group 1-3 years, the mean concentration was
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70