In this paper, the anthor made a basic study of the storage function model and examined several constants in applying the storage function model to flood run-off analysis by dealing with the data in the Supyung and Hoyng Syung watershed, the applicabilities of the storage function model are examined by searching this optimum model parameters in two watersheds. The results are summarized as follows, 1) The optimum values of the exponential constants, P, in the storage function model showed to be 0.77 to 0.87 in two watersheds observed, therefore it was confirmed that the storage fumction model was approaching to the surface runoff model. 2) It was confirmed that the interval of variation of the storage constant, K, Showed to be larger than that of the exponential constant, p. 3) Relative erros in the discharge obtained by using the storage function model and the SDFP mothod showed to be 20 and 17 percent respectively to the observed discharge, therefore it was confirmed that the applicability of the storage function model using the SDFP method are excellent for runoff analysis. 4) A simple method is proposed for estimating the lag time in the storage function model.
본 연구에서는 농업용 저수지에서 저수량 예측모형과 함께 저수지의 목표저수량 및 한계저수량을 유지하기 위한 저수지 운영방안을 제시하였다. 대상저수지인 금강저수지에서 1990년부터 200l년까지의 저수량 자료를 이용하여 갈수빈도해석을 적용하고, 2년빈도 한발저수량을 목표저수량(target storage)으로, 10년빈도 한발저수량을 한계저수량(critical storage)으로 설정하였다. 농업용 저수지의 운영의 효율화를 위해서는 우선 합리적인 방법을 통하여 장래 저수량을 예측하여야 한다. 예측된 저수량은 저수지 운영에 관한 계획을 수립하는데 기초자료로 활용될 수 있다. 본 연구에는 저수량 예측모형으로 ARIMA 모형과 자기회귀오차모형을 적용하였다. ARIMA 모형은 과거 저수량 자료만을 근거로 하여 저수량을 예측함으로서 예측정도가 상대적으로 낮은 것으로 나타난 반면, 자기회귀오차모형은 저수량과 관련 있는 설명변수들을 이용함으로써 예측의 효과를 높일 수 있었다. 농업용 저수지의 저수량은 이전 저수량, 강수량, 평균온도, 최고온도, 관개면적, 풍속, 습도의 영향을 받으므로 자기회귀오차모형을 적용하여 저수량과 저수량에 영향을 미치는 요인과의 관계를 분석하였다. 자기회귀오차모형에 의한 저수량 예측 관계식은 저수지의 연속방정식과 유사한 관계식으로 유도되어 실제 적용성이 높을 것으로 판단되며, 금광저수지에서 예측된 2002년도 저수량과 관측된 저수량을 비교한 결과, 양호한 예측결과를 보여 주었다.
In the Semantic Web, storage models are required to efficiently store and retrieve metadata and ontology represented using OWL that can provide expressive power and reasoning support. In this paper, we propose an OWL storage model that can store and retrieve many restrictions and semantic relations defined on ontology with metadata. In addition, we propose some methods and rules to improve query processing efficiency of the proposed storage model. The proposed storage model can store and process large amounts of ontology and metadata because it consists of tables based on the relational database. And the proposed model can quickly provide more accurate results to users because of performing two different types of ontology reasoning and using the prime number labeling scheme to easily identify hierarchy relationships between classes or properties. The comparative evaluation results show that our storage model provides better performance than the existing storage model.
데이터 저장장치는 서버의 내부나 근처에 있는 것으로 인식되어 왔으나 네트워크 기술의 발달로 저장장치 시스템은 주 전산기와 원거리에 떨어져 존재할 수 있게 되었다. 인터넷 시대에 데이터 량의 폭발적인 증가는 데이터를 저장하는 시스템과 이를 전송하는 시스템의 균형 있는 발전을 요구하고 있으며 SAN(Storage Area Network)이나 NAS(Network Attached Storage)은 이러한 요구를 반영하고 있다. 저장장치로부터 최적의 성능을 도출하기 위해서 복잡한 저장 네트워크의 용량과 한계를 파악하는 것이 중요하다. 파악된 데이터는 성능 조율의 기초가 되고 저장장치의 구매 시점을 결정하는데 사용될 수도 있다. 본 논문에서는 저장 네트워크 시스템의 큐잉 네트워크를 통한 분석적 모델을 제시한 다음, 이의 시뮬레이션하여 분석적 모델이 정당하다는 것을 입증한다.
The performance of Storage assignment policies is traditionally evaluated with the storage capacity of and AS/RS taken as given. However, the storage capacity is closely related to the inventory model used in real situations. This paper presents a model of evaluating the performance of three storage policies(random storage, class-based storage, and full turnover-based storage) considering production lot-sizing simultaneously with storage assignment of inventory items. The objective of the model is to achieve a balance of warehouse throughput and space requirements such that a total of material handling cost, production ordering cost, and inventory holding cost is minimized. The effects of the parameters involved in the model are investigated on the performance of each storage policy through example problems.
본류대를 따라 저장대가 주기적으로 존재하는 다중저장대모형을 개발하고 자연하천의 혼합거동을 해석하였다. 개발된 모형 및 하나의 저장대를 갖는 기존의 저장대모형을 비교하기 위하여 모형실험 결과를 이용하였다. 본 모형을 이용하여 구한 농도분포는 모형실험에서 수집된 시간에 따른 농도분포를 잘 재현하는 반면, 연속적인 저장대를 갖는 기존모형은 불연속적인 저장대 구조로 인해 발생하는 농도분포의 부차적인 융기부분을 정확히 재현하지 못하는 것으로 나타났다. 본 모형의 현장 적용성을 검토하기 위하여 새로운 모형을 미국 미네소타주에 위치한 Shingobee River에 적용하고 혼합거동을 해석한 결과 새로운 저장대 모형은 저장대가 존재하는 자연하천에서의 분산거동을 정확하게 모의하는 것으로 나타났다.
The determination of feasible design flood is the most important to control flood damage in river management. Model parameters should be calibrated using observed discharge but due to deficiency of observed data the parameters have been adopted by engineer's empirical sense. Storage constant in the Clark unit hydrograph method mainly affects magnitude of peak flood. This study is to estimate the storage constant based on the observed rainfall-runoff data at the three stage stations in the Imjin river basin and the three stage stations in the Ansung river basin. In this study four methods have been proposed to estimate the storage constant from observed rainfall-runoff data. The HEC-HMS model has been adopted to execute the sensitivity of storage constant. A criteria has been proposed to determine storage constant based on the results of the observed hydrograph and the HEC-HMS model.
A control oriented model of the Lean $NO_x$ trap (LNT) was developed to determine the timing of $NO_x$ regeneration. The LNT model consists of $NO_x$ storage and reduction model. Once $NO_x$ is stored ($NO_x$ storage model), at the right timing $NO_x$ should be released and then reduced ($NO_x$ reduction model) with reductants on the catalyst active sites, called regeneration. The $NO_x$ storage model simulates the degree of stored $NO_x$ in the LNT. It is structured by an instantaneous $NO_x$ storage efficiency and the $NO_x$ storage capacity model. The $NO_x$ storge capacity model was modeled to have a Gaussian distribution with a function of exhaust gas temperature. $NO_x$ release and reduction reactions for the $NO_x$ reduction model were modeled as Arrhenius equations. The parameter identification was optimally performed by the data of the bench flow reactor test results at space velocity 50,000/hr, 80,000/hr, and temperature of $250-500^{\circ}C$. The LNT model state, storage fraction indicates the degree of stored $NO_x$ in the LNT and thus, the timing of the regeneration can be determined based on it. For practical purpose, this model will be verified more completely by engine test data which simulate the NEDC transient mode.
In this paper, we determine the required storage capacity of a unit-load automated storage/retrieval system(AS/RS) under random storage assignment(RAN) and n-class turnover-based storage assignment(CN) policies. For each of the storage policies, an analytic model to determine the optimal storage capacity of the AS/RS is formulated so that the total cost related to storage space and space shortage is minimized while satisfying a desired service level. A closed form of optimal solutions for the RAN policy is derived from the model. For the CN policy, an optimal storage capacity is shown to be determined by applying the existing iterative search algorithm developed for the full turnover-based storage(FULL) policy. Finally, an application of the approach to the standard economic-order-quantity inventory model is provided.
In the daily multi-reservoir operating problem, monthly storage targets can be used as principal operational guidelines. In this study, we tested the use of a simple back-propagation Artificial Neural Network (ANN) model to derive monthly storage guideline for daily Coordinated Multi-reservoir Operating Model (CoMOM) of the Han-River basin. This approach is based on the belief that the optimum solution of the daily CoMOM has a good performance, and the ANN model trained with the results of daily CoMOM would produce effective monthly operating guidelines. The optimum results of daily CoMOM is used as the training set for the back-propagation ANN model, which is designed to derive monthly reservoir storage targets in the basin. For the input patterns of the ANN model, we adopted the ratios of initial storage of each dam to the storage of Paldang dam, ratios of monthly expected inflow of each dam to the total inflow of the whole basin, ratios of monthly demand at each dam to the total demand of the whole basin, ratio of total storage of the whole basin to the active storage of Paldang dam, and the ratio of total inflow of the whole basin to the active storage of the whole basin. And the output pattern of ANN model is the optimal final storages that are generated by the daily CoMOM. Then, we analyzed the performance of the ANN model by using a real-time simulation procedure for the multi-reservoir system of the Han-river basin, assuming that historical inflows from October 1st, 2004 to June 30th, 2007 (except July, August, September) were occurred. The simulation results showed that by utilizing the monthly storage target provided by the ANN model, we could reduce the spillages, increase hydropower generation, and secure more water at the end of the planning horizon compared to the historical records.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.