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Abstract

The performance of Storage assignment palicies is traditionally evaluated with the storage capacity of
an AS/RS taken as given. However, the storage capacity is closely related to the inventory model used

in real situations. This paper presents a model of evaluating the performance of three storage policies

(random storage, class-based storage, and full turnover-based storage) considering preduction lot-

sizing simultaneously with storage assignment of inventory items. The objective of the model is to

achieve a balance of warehouse throughput and space requirements such that a total of material

handling cost, production ordering cost, and inventory holding cost is minimized. The effects of the

parameters involved in the model are investigated on the performance of each storage pelicy through

example problems.

1. Introduction

The amouni of material handling costs
incurred in an automated storage/retrieval
system{AS/RS) largely depends on the storage
assignment policy used. As such, wise selection
of the storage policy should improve the
operating efficiency of the warehouse, which
could reduce the costs considerably.

Assuming that the slorage capacity of an
awtomated warehouse is given, Hausman,
Schwartz, and Graves(HSG)E2, 3] described
the behavior of three kinds of storage policy

(random, full turnover-based, class-based) in
terms of the expected travel time of the storage
/retrieval(S/R) machine. Recently, Hwang, Ko,
and Jang[5] extended HSG’s work[3] for a
nonsquare-in-time rack.

However, the storage capacity required to
acé:ommodate the inventory items obwviously
varies according to both production lot sizing
and storage policy decisions. Therefore,
performance comparison of storage policies
should be made considering the effect of
production lot sizing.

Wilson[7] first adressed the joint problem of
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storage-assignment/log-sizing  under  full
turnover-based storage in a traditional discrete
storage rack and formulated it as a nonlinear
program. Later, Hodgson and Lowe[4]
considered the problem similar to Wilson’s
except that storage assignments are made on
continuous AS/RS-rack face in time. In these

studies, however, no analysis was done on the.

expected behavior of lot sizes and the different
storage policies.

It is generally known that random storage
requires less space than full turnover-based
storage, but yields lower throughput, instead
[6]. On the cther hand, class-based storage can
yield both the space benefit of random storage
and the throughpui benefit of full turnover-
based storage. However, these assertions may
not be valid when storage capacity of =
warehouse is not given in advance, but have to
be determined by jointly considering lot sizing
and storage assignment. In this case, evaluvation
of storage policies should be made in terms of
space requirements, expected throughput, and
related costs including those of porduction
ordering, inventory holding, and material
handling.

Regarding this, we extend the work by HSG
[3] for a nonsquare-in-time rack incorporating
lot sizing of inventory items into storage
assignment decisions. In this paper, the
inventory items are treated as a continuous
variable. The main advantages of this approach
appear 1o be in the .relative simplicity of
problem formulation and the ability to obtain
and analyze computational results while the
shape of item demand distribution changes.

In the sections that follow, first the general

formulation of the storage-assignment/lot-
sizing model is proposed, and then results for
each storage policy are given. Finally, some
observations are described, which are made
from the sensitivity analysis for examining the
effects of changes in parameter values.

2. Development of Storage-
Assignment/Lot-Sizing Models

2.1 General Model Formulation

Assumptions

A single-aisle continuous rectangular storage
rack with the input/ouiput(l/0} point being
located at the lower left corner;

Uniform sized storage location and pallet
each containing a single type of item;

Tchebyshev - travel of the S/R machine with
known vertical and horizontal speeds;

No interlieving operation;

Linear material-handling(S/R machine tra-

vel) cost;

Known demand rate of inventory items;

Economic-order-quantity(EOQ)  lot-sizing
model.

Rack Normalization

Consider a single-aisle storage rack whose
dimensions are L(rack length) xH(rack heig-
ht). Following Bozer and White[1] the rack is
normalized as a 1xb continuous rectangle in
time:

C =storage capacity=Lx H;

v, =horizontal speed of the 5/R machine;
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v, =vertical speed of the S/R machine;

t, =time to reach the end of the rack=L/v,;

t, =time to reach the top of the rack=H/v,;

T =denormalizing factor=t, assuming i,=1,

b =rack shape factor=t,/t, 0<b=<1,

Note that for specific values of C and b, T
can be expressed from the above relationships
as

T=(C/bv.v,}'? (1

General Model

Since both Wilson's and Hodgson & Lowe's
approaches are based on discrete lot-size
variables, it is not easy to perform sensitivity
analysis such as for investigating the effect of
change in the item demand pattern. In order to
overcome this limitation and to provide the
flexibility in the analysis, production lot sizes
are here treated to be continuous over 0<i<l1
where 1 represents i-th percentile item being
stored in the warehouse. Hereafter, we will use
the term, “item i” instead of “i-th percentile
item”, for convenience.

Let the lot size of item i be q(i)(=0 for 0<i
<1) and the cummulative one, Q(i}, then the
following holds:

Q)=J, aliddi, 0<i<l
Now the total lot size, R, becomes R=Q(1), and
thus the required storage capacity of the
warehouse will be

C=wR (2)
where w=

1/2 for random storage assignment,
[ 1 for full turnover-based assignment.

The probiem concerned can be stated as:

(PO) Min TC(q(i)) =, (O¢a(i))

+H(q(i)) di+ [, (M(Q(i))di (3)
sujbject to
0<R=f, q()di<U 4

q(i)=0, 0<i<l
where O(q(i))=yearly porduction-ordering
cost of item i;
H{q(i))=yearly holding cost of item
1
M(Q(i)) =yearly

cost of item 1; and

material-handling

U=upper bound of total lot size.
Given the cummulative lot-size function, Q
(i), M represents the material-handling cost
which resultes from an optimal storage
assignment. In (3), the production ordering and
holding costs are expressed as separable by
item. However, the material-handling cost
cannot be separately represenied, since the cost
for each item is a function of the travel time
from the I/O point to the storage location,
which depends on q(i) for all i as well as the
storage policy used.
M can be xpressed as
M(Q(i))=4c « a(i) - t(3) (5)
where a{i)=yearly demand rate(measured in
full pallet loads) of item i derived
by the “ABC” phenomenon for
inventories
=Asi™, 0<i<l, 0<s<1, (6)
where s denotes the demand-curve
shape factor;
(i) =travel time to the location of item i
=(wR/bv.v,)"z(1} (7)
where z(i) is the normalized time,
and
c=cost of $/R machine travel per
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unit time,
Note that since J, a(i)di=A, A will be the to-
tal number of pallets {iémanded annually.
Expression(5) reflects that costs are incurred
for both item storage and its ultimate retrieval,
and the S/R machine makes a round trip.
Expression {7) is derived by using (1) and (2).
Substituting (6) and (7) into (5) yields
M(Q(i)) =4cAV,(wR)"? si™'z(i) (8)
where V,=(bv.v,)"'%, and for convenience let
V,=(2bv.v,) ' Also, assuming the basic EOQ
model the ordering and holding costs are
O(q(i)}+H(q(i}) =ka(i) /q(i) +hq(i)/2
=KAst*"/q(i) +hq{i)/2,
0<i<l ®
where k and h are respectively ordering and
holding costs per unit per year which, for
simplicity, are assumed constant for all items.
Finally, letting U=A without loss, of
generality and substituting (8) and (9) into
(3), (PO) can be rewritten as:

(P1) Min TC(q(i)) =, (KAsi™")/q(i)
+hq(i)/2)di
+4cAV,(wR)¥ [ 'sim'z(i)di (10}
subject to
0<R=/q(di<A
a(i)=0, 0<isl.

2.2 Random Storage Assignment{RAN}

Under random storage assignment, any pallet
is equally likely to be stored in any of storage
location. Thus, in this case z(i) is independent
of 1 such that

z(i)=b"/6 | 1/2, 0<ix<]l. - (11)

Since w=1/2 for RAN, rearranging (10) with
(11) yields the total cost under RAN, TCguy,
given by

TCrav(a(i)) =1, (KAsi™' /(i) +hq(i)/2di
+4cAVy(b/6+1/2)(J, (D)™ (12)

The first integral term in (12) is a convex
function of q(i), but the last term is not always
convex. Due to this, it might be extremely
difficult to find an optimal lot-size function
directly from the above formulation. Instead, in
this paper we use the following form:

q(i)=Rai"', R>0,0<a<1+s5 (13)
where the upper bound of ¢ is derived from the
condition that the production ordering cost
should be positive. Them, the lot-size function
has some desirable properties such as: -

1) The total lot size is R, ie.,
fya(i)di={ Rai~'di=R:

2} The cummulative lot size,

Ri* for 0<i<

0, otherwise;

3) Let g(i) =R - f(i} where f(i) =4i*"', then
(i) can be regarded as a probility density

w=[

function with the associated cummulative
probability distribution, F(i), being i° for 0<
i<1;

4) q(i) is concave for 0<{g<1 and convex for
1<a<1+s;

5) The optimal lot size obtained from the basic
EOQ model is a special case of q(i) defined
as {13), where
R={(8kAs/h)"*/(1+s) and a={1+s)/2.

Substituting (13) into (12) gives
TCra(R, ) =L(R, @) +eR"? (14)
where L(R, ¢) =kAs/a(1—s+4)+hR/2 and &

=4cAV,(b*/6+1/2).
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PROPERTY 1. There exist a single local
minimum, (R, @rn) of TCoun(R, @) such
that
R rw={R|e:R"%/2+e,R—ey/R=0, R>>0}, and
arw)={(1+8)/2
where e;,=h/2 and e;=4kAs/{1+3s)%

Proof :See Appendix.

Considering the upperbound constraint, (4),
R juw is modified as
Ruv={R|eR"*/2+eR—e,R=0 0<R<A}.

2.3 Full Turnover-Based Stroage
Assingnment{FULL}

Under turnover-based dedicated storage,
items are assigned to storage locations in
increasing order of the ratic of their activity to
the space requirements. In a unit-load AS/RS
concerned in this study, the ratic becomes
“trunover frequency”as given below(see wilson
{7] and HSG{3)

B)=2a(i)/q{i), 0<i<].

The turnover frequency represents the number
of times unit pallet load of a given item requires
storage and retrieval per year.

Using the lot-size function in (13} again for
comparison, the yearly material-handling cost
is derived in the following.

In this case, w=1, in (7), and we get

folM(Q(i) di=4cAV,R'? J'ulsi"'z(i)di. (15)
Due to Tchebyshev tralvel of the 5/R machine,
the travel time distribution becomes
(bF()y*=b"4¥  for OKF(i)<b,
F() =i for b<F(i) <1.
Hence, the integral term in (15) will be

Iolsis—lz(i)dizj'nb shi”? i= mrz-ldi+J-bl s+ 1

z(i)=[

=s(b™*+92/(3+0/2)
+(1-b"9)/(s+a)).  (16)
Substituting (16) into (15) yields

[y M(Q())di = 4cASV.[b 0+ 972/ (s + a/2) +

(1=b*9/(s+a) R
Then, the total cost for FULL, TCpyy, is given
by

TCeuw(R, a}=L(R, ) +4cAsV [b™!*9?/(s
+a/2)+{1-b)*/(s+a) R

Notice that TCpyr is neither convex nor
concave on all (R, @). To solve the constrained
nonlinear program,

(PZ) I;Aila'l TCR;LL(R, a)

Subject to
0<R<A and 0<{ga<1+s
we might use a gradient search type of
technique.

One question that may arise would be
whether the optimal solution obtained satisfy or
not the principle of the FULL Policy under
which items with larger 8¢{ - ) should be placed
closer to the 1/O point. The following property

gives the answer.

PROPERTY 2. B(i) computed with the
optimal solution of (P2), (R, @rers), is non-
mereasing for 0<i<1.

Proof : See Appendix.

Finally, during the proof of PROPERTY 3 it
is found that!:

amn=(1+3)/2<apu<] +s.

An implication of this result might be that be
that applying the FULL policy leads to the
degree of skewness in the obtained lot-size
curve being always smaller than that under
RAN.
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2.4 Class-Based Storage Assignment
(C2, C3, Cx)

Class based storage is a more practical

version of FULL. In this policy, pallets and rack -

locations are jointly partitioned into a smail
number of classes based on item turnover
distribution and travel times, - respectively.
Within any given class, pallets are then
assigned to storage locations randomly.

We first derive tolal cost expressions for the
two-class system(C2) and the three—class
system(C3), and then extend to the limiting
case, the full turnover—based storage system(C
c0) having the storage capacity being equal 1o
R/2. Note that the cost expressions for
production ordering and inventory holding costs
are the same as those of RAN and FULL.

C2 System
Let B be the partitioning point which divides
the rack into two classes such that class |
region is used for the higher-turnover pallets
and class ] region for the lower—turnover
pallets. The associated iiem partitioning point,
I, with B will be
=[(B2/b)”" for 0<B<bh,
B/ for b<Bx1,.
The material handling cost, Mj, for the two-

an

class system then becomes
M=, MQ()) di
=de(fya(Didi+], ali)y di) (18)
where t; and t;, are the expected one-way
and class 1,

respectively. Denoting M} the material handling
cost for 0<B<b, and M3 for b<<Bx1, the follo-

travel times for class |

wing resulis are obtained:
Case 1: 0<B<b

In this case, 1; and t;, are respectively expres-
sed as

t;=(2/3)V; | #* (bR)'”? (19)
and

Ty =Va(b2—4b"2 [ 32+ BIRVE/6(1— [ 9. (20)
Thus, substituting (19) and (20} into (18), one
can derive

MR, a, |)}=4cAV,[(2/3)b* | =+ (1—
[ {(bf—4b"? [ 32+3)/6(1— [ ) JR'=
Case 2: b<B<1

Similarly,

L=Vo(b* | ~+3] 9R/6 (21}
and

Tu=Val1+ [ 9R¥/2. (22)

By substituting (21) and (22) into (18),

Mi(R, a2, 1)=4cAV,[(B*] *+3]9)[+/6+
1+ 90— 19/2Ir",

Consequently, the total costs, TC, j=1, 2
where j represents the case, become a function
of three decision variables, R, @, and |, such
that

TCi(R, g, | )=L(R, &)+ Mi(R, a, 1),

i=1, 2.

C3 System

A similar approach is applied to the three-
class system. Let B, and B, denote the two
partitioning points which divide the rack into
three classes. Also, the corresponding item
partitioning point, [, and [, can be found
from (17). The material handling costs, ML j=
1, 2, 3, are derived, where the superscript ]
represents each case defined m terms of the
relative locations of B, and B..
Case 1: 0<B,<b, 0<B,;<hb



1a%, B8 1992 6

Evaluation of Storage Policies with Production Lot—Sizing Consideration in an AS/RS

17

Mi(R, g, I, L}=4cAV,[(2/3)b 1+«
+2b (I (L) +1HI15—15)
J3(IF+18%)+ (b*—4bVZ %2 4-3)

(1-I5)/6 (1 -1 JR~
Case 2: 0<B <b, b<B; <1

Mi(R, a, I;, L) =4cAV,[ (2/3)b'?

L+ 924 (b2 + 33— Ab'/2[}2)
(B-I/6(E—-1)+{1-B){(1+1p)/2]R"~
Case 3. b=B <1, b<B,<1

MHR, a, 1, 1) =4cAV,[1}(b*/6l;+1:/2)
+{(G-IHI+1)/2
+(1-)(1+I)/2IR"2,

Consequently, the total cost of each case j, TCls,
becomes a function of four decision variables,
R, g, 1, and E, as given by

TCiLR, a, I, L)=L(R, 2) +MKR, 4, 1, 1),

i=1,2, 3.

As is in the case of FULL, both TC. and TC.
are not proved to be either convex or concave.
Ta solve the optimization models for the class-
based storage, one can also resort to any one of

existing search procedures.

Cco System
As the number of classes geis infnitly large,

-the class—based system approaches to the full

trunover-based storage. However, since within
any class all items are to be stored under RAN,
the total storage requirement of the infinite
class system should be only R/2, which
contradicts the definition of FULL. Due 1o this,
the limiting case can be only used for
estimating the expected limit of system
throughput and the path of optimal solutions
being obtained.

The total cost denoted by TC,. can be found
directly by replacing R with R/2 m the material

-handling cost expression for FULL, as given
below

TC..(R, a)=L(R, @)+4cAsV [b*1+972/(s+
a/2)+(1-b*9)/(s+a)](R/2),

3. Sensitivity Analysis

In this seciion, the effects of changes in
related parameter values are investigated on
the performance differences among 5 storage
policies, i.e., RAN, C2, C3, Cee, and FULL. The
parameters considered are s, b, k, h, and c.

A full factorial design of experiments was
executed for each storage policy wich the
following data set:

s=(0.065(20%/90%), 0.139(20%/80%), 0.

222(20%/70%), 0.138(20%/60%), 0.431
{20%/50% ), 0.500(20%/45%), 1.000(20
%/20%,

b={04, 0.7, 1.0),

k=1(4000, 42000, 80000)

h=(0.3, 300, 599.7), and

e=(10Q, 155, 300)
where 20%/y% implies that 20% of the
inventoried ilems represent y% of the total
demand, and k, h, and ¢ are all measured in 100
won. Thus, for each storage policy,
567(=7 x 3*) problems are solved.

We believe that the data set have the
sufficient generality to allow for the modeling
of a wide class of systems. The other given data
are:

V.=60m/min, V,=20m/min, and A =10000.

The computer program for the experiments
was written in Quick-BASIC and implemented
on an IBM-PC(386). Each problem generated
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was solved by using a simple grid-search
technique within reasonable computer time. A
sample solution is given in Table 1.

For each storage policy, we first investigated
the general trend in optimal values of the
decision variables, R, g, B, and (B,, B.), as well

as some performance indices such as the
expected normalized time(ENT), the expected
denormalized time(EDT), and the total cost
(TC). The observations made from the
experimental results are listed in Table 2.

{Table 1) Solution of the problem given that s=0.139, b=0.4, k=4000, h=0.3, and c=10.

storage policy

RAN Cc2 C3 Coo FULL
R 346.8 461.7 563.9 691.5 539.5
a 0.569 0.745 0.783 0.811 0.813
B — 0.182 - - —
(B, B) - - (0.077, 0.330) - -
ENT 1.053 0.571 0.460 0.366 0.366
EDT 0.663 0.396 0,353 0.311 0.388
TC 176101.6 120324.4 106014.5 924828 116460.1
{Table 2> Trend of optirnal solutions and some performance
measures as each parameter value increases.
parameter( 1) R a B (B, B ENT EDT TC
s # 1 t t, t@ 1 *
b 1 =@ 1 (r, 1 i i {
k 1 =@ = =, =) =@ * !
h ! * @ (=, =) = i t
e l *@ = =, =) =@ i )

There exists no significant difference.

% % &

8.

Ta show the typical effects of s and b on the
expected travel times, Figure 1 and Figure 2
are repectively given for the case where k=
42000, h=0.3, and ¢=2300. From the figures we
can find that the computational results from the

The corresponding value of RAN is theoratically constant.
There exist significant differences but no trend is found.
As a larger, Ryay increases strictly, whereas R for each of the other policies does only for small value of

models developed are almost equivalent to those
derived theoretically whithout production lot—
sizing consideration[5]. This is also valid for B
and (B,, B:), that is, every B obitained was
located between B, and B,.
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[Fgure 1] The effect of s on the expected travel times when b=1.0, k=42000, h=0.3, and ¢=2300.
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[Figure 2] The effect of s on the expected travel times when s=0.139, k=42000, h=0.3, and ¢=

300.
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[Figure 3] The sensitivity of total cost to s and b when k=42000, h=0.3, and ¢=300.

The sensitivity of total costs according to
both s and b is depicted in Figure 3.

Next, for the performance comparison among
storage policies, denoting IENT, IEDT, IR, and
ITC the relative measures of policy performance
to RAN, which are defined as:

IENT = (ENTgan—ENT.)/ENTras

IEDT =(EDTzan—EDT.)/EDTram

IR =(R,—R)/RANgim and

ITC ={(TCran—TC.)/TCpan
where the subscript x represents a policy, the
following observations are made:

(1) With each set of given parameter values,
according to the sequence of (RAN, C2, C3, C
00), R and ¢ increase(see Figure 4), and on the
contrary ENT, EDT, and TC decrease. How-
ever, those results from FULL are observed to
be dependent upon the problems generated.

(2) As s gets smaller with other parameter
values being fixed, I[ENT, IEDT, and ITC are all

increasing. This indicates that the larger the
improvement in iravel times is with the most
highly skewed demand distribution yielding the
largest, the better the relative quality of each
policy to RAN is,

As expected, IENTw,; is, like other policies,
always founded to be greater than or equal to
zero for all s. In addition, there exists no
significant difference between IENTg,. and
[ENT... However, as s increases, IEDTq,,
becomes dramatically decreasing, and as a
result especially for fairly large values of s, 1e.,
520431, it becomes negative valued, which
yields the bad performance of FULL: in terms of
total cost. Figure 5 shows the experimental
result reflecting these observations.

(3) For each policy, the percentage increment
(IR) in total lot size over RAN is also

- increasing as the value of s becomes smaller.

From this we know that larger reductions in
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[Figure 5] The effect of s on the percentage improvement in travel times and total cost for each
policy, which are averaged for all b, k, h, and c.

travel times result in yielding larger lot sizes, In any case of the experimental results, IReouc
which implies larger warchouse capacity is is observed to be less than or equal to IR...
required. Also, for the completely unskewed distribution
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(ie, 5=1.0), [Rpur i1s always nonpositive
valued. These observations are depicted In
Figure 6 where the average IRs for different
values of s are given.

(4) As the value of b is increasing, IENT,
IEDT, and ITC for each policy are all
decreasing, which reflects the theoretical result

that potential gains in travel times over RAN
become minimum when the rack is square in
time. Figure 7 represents this observation. From
the figure we can find that as far as total costs
are concerned, Coo yields the best results,
whereas FULL does the worst.
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[Figure 6] The effect of s on the percentage increment in total lot sizes which are averaged for all b,
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[Figure 7] The effect of b on the percentage irmprovement in travel times and total costs for each
policy, which are averaged for all s, k, h, and c.
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(5} Finally, the effects of changes in other
parameters of k, ¢, and h on the relative policy
performance over RAN are summarized in
(Table 3> Effects of changes in parameter

values on the relative performance of each
storage policy over RAN,

parameter performance index
1) IR I[ENT IEDT ITC
s i 1 ! )
b ! i l !
k * = = =
h * = = *
c * = = *

#* There exist significant differences but no trend
is found.

= There exists no significant differnece.
4. Conclusions

Significant reductions in inventory control
and material handling costs of an AS/RS are
obtainable
assignment and production loi sizing. Assuming

by jointly considering storage

the geometric function type of lot-size
distribution, this paper have formulated the
joint problem and drawn some obseravtions
from computaional experience. The resuits
obtained by solving the models developed in this
paper might be viewed as an achievement of a
more desirable valance between throughput and
storage capacity. However, the assumptions of
continuous rack and coniinuous demend curve
must meake the current results be incomplete to
a certain degree.

As a topic of further research, it is
recommended io exiend the models by including
storage and retrival operation of the S/R

machine.
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Appendix

Proof of FROPERTY 1.

Let TCraM(R, a)=g1(R, a)+gg(R) where g,
(R, a) is readily shown to be convex and
positive on {(R, ¢) | R>0, 0<g<{1+s}.

Since g, can be represented by the product of
two single—variable functions which are positive
for all feasible values of (R, &),

gu{R)=kAs/R and gi.(a) =(a(l+s—a))™},
the problem can be decomposed as

Min TCgean(R, a)=1‘~%in(gu(R)

R+ a
- Min{(g(a)) +2:(R) (All)

Since g{a) itself is convex on 0<a<l+s,
the optimal value of @, gkan which minimizes g,
(@) and in turn TCg.y should satisfy the
following necessary and sufficient condition

2(8) _ (1 +s-a)—a /(1 +)=0,

(Al12)
Hence, solving (A12) for g gives the result
aran,={1+s)/2.
Now, (All) becomes a single—variable
optimization problem by substituting gray into
TCraw such that

P\d;n TCRAN(R, ahy)=e|R1’3+egR+eafR

where >0, i=1, 2, 3.

It follows from PROPERTY 1 given in
Hodgson and Lowe[4] that there exists exactly
ane point, R=Rz»>>0 such that

R JTC(?E,{GEAN) =91R|;2/2+92R_.93/R=0_

Thu.s, (RtRAM a‘g,uv) is a Smgle pOlnt that

minimizes TCgan.

Proof of PROPERTY 2 :

Let TCrir(R, @) =gu(R) - gnle)+eR+e, -
g2:(R) - gola) where e,=4cAsV . gy(R)=R'?;
and

gu(@)=b 22/ (s+4/2)+(1—b 9 /(s+
ak

Since g1, i, Ea1s L2y €2, and g, are all positive
on {(R, a) | 0<R<A, 0<a<1+s}, and TCrs
is the sum of the products of single variable
functions, in order to minimize TCqr both gi;
{a) and gw(g) should be minimized as far as
possible.

Form the fact that gps=(1-+s)/2 minimizes
gi(@) which is convex, and gi(a) is strictly
decreasing on 0<g<(1+s, we know that an
optimal value of g, @, must be located
somewhere between {1+5)/2 and 1+s. With
this and the relation that s<(1+s)/2 for 0<s
<1, the following always holds :

amrr2s (A21)

Substituting gr.y. into the expression for £ (1)
gives

A1) =2a(i)/q(i) =2si""/Rau i ™"

={(2s/Rarpe i)™,
0<igl.
It follows from {A21) that 8{i} is nonincreas-
ing for 0<i<1.



