• Title/Summary/Keyword: Stokes problems

Search Result 184, Processing Time 0.023 seconds

An Immersed-Boundary Finite-Volume Method for Simulation of Heat Transfer in Complex Geometries

  • Kim, Jungwoo;Park, Haecheon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.1026-1035
    • /
    • 2004
  • An immersed boundary method for solving the Navier-Stokes and thermal energy equations is developed to compute the heat transfer over or inside the complex geometries in the Cartesian or cylindrical coordinates by introducing the momentum forcing, mass source/sink, and heat source/sink. The present method is based on the finite volume approach on a staggered mesh together with a fractional step method. The method of applying the momentum forcing and mass source/sink to satisfy the no-slip condition on the body surface is explained in detail in Kim, Kim and Choi (2001, Journal of Computational Physics). In this paper, the heat source/sink is introduced on the body surface or inside the body to satisfy the iso-thermal or iso-heat-flux condition on the immersed boundary. The present method is applied to three different problems : forced convection around a circular cylinder, mixed convection around a pair of circular cylinders, and forced convection around a main cylinder with a secondary small cylinder. The results show good agreements with those obtained by previous experiments and numerical simulations, verifying the accuracy of the present method.

A Numerical Study on the Aerodynamic Characteristics of a Bus-Like Bluff Body - Effect of Turbulence Model and Discretisation Scheme - (버스형상 무딘물체의 공력특성에 관한 수치해석적 고찰 - 난류모델과 이산화법의 영향 -)

  • 김민호;국종영;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.115-123
    • /
    • 2003
  • With the advent of high performance computers and more efficient numerical algorithms, computational fluid dynamics(CFD) has come out as a modem alternative for reducing the use of wind tunnels test in automotive engineering. However, in spite of the fact that many competent researchers have made all their talents in developing turbulence model over since the past dozen or more years, it has been an important impediment in using the CFD effectively to design machinery and to diagnose or to improve engineering problems in the industry since the turbulence model has been acting as the Achilles' tendon in aspect of the reliability even to this time. In this study, Reynolds-averaged Wavier-Stokes equations were solved to simulate an incompressible turbulent flow around a bus-like bluff body near ground plane. In order to investigate the effect of the discretisation schemes and turbulence model on the aerodynamic forces several turbulence models with five convective difference schemes are adopted. From the results of this study, it is clear that choice of turbulence model and discretisation scheme profoundly affects the computational outcome. The results also show that the adoption of RNG $k-\varepsilon$ turbulence model and nonlinear quadratic turbulence model with the second order accurate discretisation scheme predicts fairly well the aerodynamic coefficients.

Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes

  • He, Tao
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.423-448
    • /
    • 2015
  • In this paper the unsteady fluid-structure interaction (FSI) problems with large structural displacement are solved by partitioned solution approaches in the arbitrary Lagrangian-Eulerian finite element framework. The incompressible Navier-Stokes equations are solved by the characteristic-based split (CBS) scheme. Both a rigid body and a geometrically nonlinear solid are considered as the structural models. The latter is solved by Newton-Raphson procedure. The equation governing the structural motion is advanced by Newmark-${\beta}$ method in time. The dynamic mesh is updated by using moving submesh approach that cooperates with the ortho-semi-torsional spring analogy method. A mass source term (MST) is introduced into the CBS scheme to satisfy geometric conservation law. Three partitioned coupling strategies are developed to take FSI into account, involving the explicit, implicit and semi-implicit schemes. The semi-implicit scheme is a mixture of the explicit and implicit coupling schemes due to the fluid projection splitting. In this scheme MST is renewed for interfacial elements. Fixed-point algorithm with Aitken's ${\Delta}^2$ method is carried out to couple different solvers within the implicit and semi-implicit schemes. Flow-induced vibrations of a bridge deck and a flexible cantilever behind an obstacle are analyzed to test the performance of the proposed methods. The overall numerical results agree well with the existing data, demonstrating the validity and applicability of the present approaches.

Lock-in and drag amplification effects in slender line-like structures through CFD

  • Belver, Ali Vasallo;Iban, Antolin Lorenzana;Rossi, Riccardo
    • Wind and Structures
    • /
    • v.15 no.3
    • /
    • pp.189-208
    • /
    • 2012
  • Lock-in and drag amplification phenomena are studied for a flexible cantilever using a simplified fluid-structure interaction approach. Instead of solving the 3D domain, a simplified setup is devised, in which 2D flow problems are solved on a number of planes parallel to the wind direction and transversal to the structure. On such planes, the incompressible Navier-Stokes equations are solved to estimate the fluid action at different positions of the line-like structure. The fluid flow on each plane is coupled with the structural deformation at the corresponding position, affecting the dynamic behaviour of the system. An Arbitrary Lagrangian-Eulerian (ALE) approach is used to take in account the deformation of the domain, and a fractional-step scheme is used to solve the fluid field. The stabilization of incompressibility and convection is achieved through orthogonal quasi-static subscales, an approach that is believed to provide a first step towards turbulence modelling. In order to model the structural problem, a special one-dimensional element for thin walled cross-section beam is implemented. The standard second-order Bossak method is used for the time integration of the structural problem.

A Numerical Study on the Heat Transfer Characteristics in an Internally Finned Circular Tube Flow (내부핀이 부착된 원형관유동에서의 열전달특성에 관한 수치적연구)

  • Pak, H.Y.;Park, K.W.;Choi, M.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.267-278
    • /
    • 1996
  • Steady, laminar, forced convection flow and heat transfer in the entrance region of an internally finned circular duct with a finite thermal conductivity has been analyzed numerically. The problem under investigation is a three-dimensional boundary layer problem, and is solved by employing a marching-type procedure which involves solution of a series of 2-dimensional elliptic problems in the cross-stream plane. Two types of inlet hydrodynamic conditions are considered : (a) uniform velocity flow and (b) fully developed flow. From the above inlet conditions, the effects of the fin height(h), fin number(N) and conductivity ratio($k_r$) on the flow and thermal characteristics are investigated. The numerical results show that the height and number of fins, and ratio of the solid to fluid thermal conductivity have pronounced effect on the solution. Considering pressure drop, optimized dimensionless fin height is 0.4.

  • PDF

NUMERICAL SIMULATIONS OF TWO DIMENSIONAL INCOMPRESSIBLE FLOWS USING ARTIFICIAL COMPRESSIBILITY METHOD (가상 압축성 기법을 이용한 이차원 비압축성 유동의 수치모사)

  • Lee, H.R.;Yoo, I.Y.;Kwak, E.K.;Lee, S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.389-396
    • /
    • 2010
  • In this paper, a new computational code was developed using Chorin's artificial compressibility method to solve the two-dimensional incompressible Navier-Stokes equations. In spatial derivatives, Roe's flux difference splitting was used for the inviscid flux, while central differencing was used for the viscous flux. Furthermore, AF-ADI with dual time stepping method was implemented for accurate unsteady computations. Two-equation turbulence models, Menter's $k-{\omega}$ SST model and Coakley's $q-{\omega}$ model, hae been adopted to solve high-Reynolds number flows. A number of numerical simulations were carried out for steady laminar and turbulent flow problems as well as unsteady flow problem. The code was verified and validated by comparing the results with other computational results and experimental results. The results of numerical simulations showed that the present developed code with the artificial compressibility method can be applied to slve steady and unsteady incompressible flows.

  • PDF

Study on Noise Characteristic of Open Cavity with Cross-Correlation Analysis (Cross-Correlation 해석을 통한 공동의 소음 특성 연구)

  • Heo Dae Nyoung;Kim Jae Wook;Lee Duck Joo
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.755-758
    • /
    • 2002
  • The physical phenomena of rectangular open cavity are numerically investigated in this paper Two-dimensional cavity problems with laminar boundary layers in upstream are simulated by using the compressible Wavier-Stokes equations. The high-order and high-resolution numerical schemes are used for the evaluation of spatial derivatives and the time integration. Cross-correlation is used to analyze the characteristics of wave propagation along time and spatial. Sudden phase shifting of 90 degrees is appeared near downstream edge, and this is coincident with the phase lag suggested in original Rossiter's equation. The results give a further understanding of the physical phenomenon of noise generation, and the resonance of flow and acoustic in cavity. Moreover, modified Rossiter's equation, which is more accurate and can be applied in various conditions, is suggested. The distance from the point of vortex generation to the point of vortex collapsing acts as effective distance of cavity resonance, and the phase difference between the point of vortex collapsing and the point of acoustic source acts as phase lag. The mechanism of acoustic generation is fully understood in this paper. The mechanism of acoustic generation is fully understood in this paper.

  • PDF

Coin Drop Simulation based on Smoothed Particles Hydrodynamics

  • Kang, Han-bin;Pack, In-seok;Song, Ju-han;Lee, Dong-ug;Park, Min-hyeok;Lee, Seok-soon
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.1
    • /
    • pp.19-25
    • /
    • 2013
  • Smoothed Particle Hydrodynamics(SPH) method uses a grid of historical analysis and is not Lagrangian particles using the grid method. The Navier-Stokes equations were used to solve the viscous flow of the non-compressed. In this study, the numerical analysis of the three-dimensional Coin Drop Simulation using SPH method was performed, and the analysis results are compared with experimental results, and a similar behavior can be seen. The commercial program used was Abaqus/Explicit. SPH method to reduce the error by comparing the existing flow analysis or interpretation of the continuing research is needed in the future. That will enable real-time analysis of material obtained as a result of these numerical simulations similar to the actual flow phenomena, depending on the development of computer graphics technology to show visually. As a result, this method can be applied to the analysis fluid - structure interaction problems in a variety of fields.

Development of Rendering Techniques for Particle-based Flow Simulation (입자 기반 유동 시뮬레이션의 렌더링 기술 개발)

  • Lee, Byung-Hyuk;Park, Jong-Chun;Jang, Young-Su;Kim, Sang-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.38-42
    • /
    • 2009
  • Recently, various particle based simulation techniques, which solve the Navier Stokes and continuity equations, have been developed and applied to complicated engineering problems. However, although progress is being made on their visualization or rendering techniques, these are still insufficient. In this study, to render a smooth configuration for a free surface, a rendering technique was developed that included the generation of density fields from the location information for simulated particles and the creation model for a polygonal surface. The developed rendering technique was applied to the visualization of a dynamic free surface flow interacting with a structure using a particle based simulation technique.

Numerical Analysis Method for the Flow Analysis in the Engine Cylinder (엔진실린더내의 유동해석을 위한 수치해석방법)

  • Choi J. W.;Lee Y. H.;Park C. K.
    • Journal of computational fluids engineering
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • In general, FDM(finite difference method) and FVM(finite volume method) are used for analyzing the fluid flow numerically. However it is difficult to apply them to problems involving complex geometries, multi-connected domains, and complex boundary conditions. On the contrary, FEM(finite element method) with coordinates transformation for the unstructured grid is effective for the complex geometries. Most of previous studies have used commercial codes such as KIVA or STAR-CD for the flow analyses in the engine cylinder, and these codes are mostly based on the FVM. In the present study, using the FEM for three-dimensional, unsteady, and incompressible Navier-Stokes equation, the velocity and pressure fields in the engine cylinder have been numerically analyzed. As a numerical algorithm, 4-step time-splitting method is used and ALE(arbitrary Lagrangian Eulerian) method is adopted for moving grids. In the Piston-Cylinder, the calculated results show good agreement in comparison with those by the FVM and the experimental results by the LDA.

  • PDF