• Title/Summary/Keyword: Stokes parameter

Search Result 91, Processing Time 0.024 seconds

Measurement of Stokes parameter changes due to blood glucose using PS-LCI (PS-LCI를 이용한 혈당 농도에 따른 Stokes 파라미터 측정)

  • 이상원;김법민
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.258-259
    • /
    • 2003
  • 최근 수년간 polarimetry, Raman spectroscopy, near infrared (NIR) absorption spectroscopy, NIR scattering, optoacoustics 등의 방법을 통하여 비침습적으로 Glucose의 농도를 측정하려는 연구가 많이 시도되었다. 일반적으로 이들 방법은 sensitivity 와 signal-to-noise ratio가 매우 낮고 복잡한 알고리즘이 요구되어져 glucose 농도 측정에 한계가 있음이 드러났다. 본 연구에서는 polarization sensitive low coherence interferometer (PS-LCI) 기법을 이용하여 농도에 따른 stokes parameters를 측정함으로써 비침습적으로 glucose를 측정하는 것이 가능한지 알아보는데 그 목적이 있다. (중략)

  • PDF

Focusing Geometry Dependence of Single Pass Raman Shifer (단인 통과 라만레이저의 집속 조건에 따른 출력 특성)

  • 고춘수
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.434-441
    • /
    • 1993
  • Focusing geometry dependence of output Stokes energy in single pass methane Raman shifter is investigated. The experimental result shows that the threshold energy decreases as confocal parameter increases. This result can be explained by gain suppression caused by Stokes - anti-Stokes coupling. In this paper, we give simple analysis for the focusing geometry dependence of Stokes - anti-Stokes coupling and present the criterion of confocal parameter to reduce the gain suppression. Focusing geometry dependence of stimulated Brillouin scattering is measured and the result is in good agreement with theoretical prediction.

  • PDF

Applications of Stokes Eigenfunctions to the Numerical Solutions of the Navier-Stokes Equations in Channels and Pipes

  • Rummler B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.63-65
    • /
    • 2003
  • General classes of boundary-pressure-driven flows of incompressible Newtonian fluids in three­dimensional (3D) channels and in 3D pipes with known steady laminar realizations are investigated respectively. The characteristic physical and geometrical quantities of the flows are subsumed in the kinetic Reynolds number Re and a parameter $\psi$, which involves the energetic ratio and the directions of the boundary-driven part and the pressure-driven part of the laminar flow. The solution of non-stationary dimension-free Navier-Stokes equations is sought in the form $\underline{u}=u_{L}+U,\;where\;u_{L}$ is the scaled laminar velocity and periodical conditions are prescribed for U in the unbounded directions. The objects of our numerical investigations are autonomous systems (S) of ordinary differential equations for the time-dependent coefficients of the spatial Stokes eigenfunction, where these systems (S) were received by application of the Galerkin-method to the dimension-free Navier-Stokes equations for u.

  • PDF

A NEW APPROACH FOR SOLVING THE STOKES PROBLEM

  • Gachpazan, M.;Kerayechian, A.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.151-164
    • /
    • 2001
  • In this paper, a new approach for finding the approximate solution of the Stokes problem is introduced. In this method the problem is transformed to an equivalent optimization problem. Then, by considering it as a distributed parameter control system, the theory of measure is used to approximate values of pressure are obtained by a finite difference scheme.

Parametric Study on the Aerodynamic Design of Axial-Flow Turbine Blades Using Two-Dimensional Navier-Stokes Equations (Navier-Stokes 방정식에 의한 축류터빈 블레이드의 공력학적 설계변수 특성 연구)

  • Chung, Ki-Seob;Chung, Hee-Taeg;Park, Jun-Young;Baek, Je-Hyun;Chang, Beom-Ik;Cho, Soo-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.169-175
    • /
    • 2000
  • A design method for transonic turbine blades is developed based on Navier-Stokes equations. The present computing process is done on the four separate steps, 1.e., determination of the blade profile, generation of the computational grids, cascade flow simulation and analysis of the computed results in the sense of the aerodynamic performance. The blade shapes are designed using the cubic polynomials under the control of the design parameters. Numerical methods for the flow equations are based on Van-Leer's FVS with an upwind TVD scheme on the finite volume. Applications are made to the VKI transonic rotor blades. Computed results are analyzed with respect to the aerodynamic performance and are compared with the experimental data.

  • PDF

Perturbation Analysis of Stokes Flow in Porous Medium (다공성 매질의 내부유동에 관한 섭동해석)

  • Seong, Kwanjae
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.393-397
    • /
    • 2005
  • In this study, flow in a porous medium is analyzed using a computer-extended perturbation series solution. The flow is modelled as a creeping flow in a periodically constricted channel. The channel walls have a sinusoidally varying width and the flow is analyzed in terms of its vorticity and stream functions in the Stokes flow regime. The perturbation series in terms of a small parameter, average width to length ratio, is extended with a computer resulting in purely asymptotic series and Pade summation is used to obtain final results. Resulting flow shows flow separations in the widening section and immobile zones in the widest section of the flow regime with reattachment in the narrowing section. Analysis of the flow separation phenomena resulted in a correlation between the two geometric parameters of the channel walls to predict the onset of flow separation in the Stokes flow regime.

Modification of the Cubic law for a Sinusoidal Aperture using Perturbation Approximation of the Steady-state Navier-Stokes Equations (섭동 이론을 이용한 정상류 Navier-Stokes 방정식의 주기함수 간극에 대한 삼승 법칙의 수정)

  • 이승도
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.389-396
    • /
    • 2003
  • It is shown that the cubic law can be modified regarding the steady-state Navier-Stokes equations by using perturbation approximation method for a sinusoidal aperture variation. In order to adopt the perturbation theory, the sinusoidal function needs to be non-dimensionalized for the amplitude and wavelength. Then, the steady-state Navier-Stokes equations can be solved by expanding the non-dimensionalized stream function with respect to the small value of the parameter (the ratio of the mean aperture to the wavelength), together with the continuity equation. From the approximate solution of the Navier-Stokes equations, the basic cubic law is successfully modified for the steady-state condition and a sinusoidal aperture variation. A finite difference method is adopted to calculate the pressure within a fracture model, and the results of numerical experiments show the accuracy and applicability of the modified cubic law. As a result, it is noted that the modified cubic law, suggested in this study, will be used for the analysis of fluid flow through aperture geometry of sinusoidal distributions.

NONPOTENTIAL PARAMETERS OF SOLAR ACTIVE REGION AR 5747

  • MOON Y.-J.;YUN H. S.;CHOE GWANGSON;PARK Y. D.;MICKEY D. L.
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.1
    • /
    • pp.47-55
    • /
    • 2000
  • Nonpotential characteristics of magnetic fields in AR 5747 are examined using Mees Solar Observatory magnetograms taken on Oct. 20, 1989 to Oct. 22, 1989. The active region showed such violent flaring activities during the observational span that strong X-ray flares took place including a 2B/X3 flare. The magnetogram data were obtained by the Haleakala Stokes Polarimeter which provides simultaneous Stokes profiles of the Fe I doublet 6301.5 and 6302.5. A nonlinear least square method was adopted to derive the magnetic field vectors from the observed Stokes profiles and a multi-step ambiguity solution method was employed to resolve the $180^{\circ}$ ambiguity. From the ambiguity-resolved vector magnetograms, we have derived a set of physical quantities characterizing the field configuration, which are magnetic flux, vertical current density, magnetic shear angle, angular shear, magnetic free energy density, a measure of magnetic field discontinuity MAD and linear force-free coefficient. Our results show that (1) magnetic nonpotentiality is concentrated near the inversion line in the flaring sites, (2) all the physical parameters decreased with time, which may imply that the active region was in a relaxation stage of its evolution, (3) 2-D MAD has similar patterns with other nonpotential parameters, demonstrating that it can be utilized as an useful parameter of flare producing active region, and (4) the linear force-free coefficient could be a evolutionary indicator with a merit as a global nonpotential parameter.

  • PDF

Effects of the Lateral Ejection Angles and Distances of Double-Jet Holes on Flim Cooling Effectiveness (이중분사 막냉각 홀의 측면 분사각 및 홀 사이의 거리가 막냉각 효율에 미치는 영향)

  • Choi, Dae-Woong;Lee, Ki-Don;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.33-41
    • /
    • 2012
  • In the present work, a parametric study on double-jet film-cooling has been carried out to enhance the film-cooling effectiveness using three-dimensional Reynolds-averaged Navier-Stokes analysis. The shear stress transport turbulence model is used as the turbulence closure. The lateral ejection angles and the lateral and streamwise distance between the centers of the cooling holes are chosen as the geometric parameters. The spatially averaged film-cooling effectiveness averaged over an area of 8 hole diameters in width and 30 hole diameters in streamwise length is used to evaluate the performance of film-cooling. The parameter of the lateral distance has the largest impact on the film cooling effectiveness compared to the others. On the other hand, the parameter of streamwise distance gives the least influence on the film cooling effectiveness.

Dynamic Heterogeneity in Spin Facilitated Model of Supercooled Liquid: Crossover from Fragile to Strong Liquid Behavior

  • Choi, Seo Woo;Kim, Soree;Jung, YounJoon
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.183-195
    • /
    • 2014
  • Kinetically constrained models (KCM) have attracted interest as models that assign dynamic origins to the interesting dynamic properties of supercooled liquid. Signs of dynamic heterogeneity in the crossover model that linearly interpolates between the FA-like symmetric constraint and the East model constraint by asymmetric parameter b were investigated using Monte Carlo technique. When the asymmetry parameter was decreased sufficiently, smooth fragile-to-strong dynamic transition was observed in terms of the relaxation time, diffusion constant, Stokes-Einstein violation, and dynamic length scale. Competition between energetically favored symmetric relaxation mechanism and entropically favored asymmetric relaxation mechanism is behind such transition.

  • PDF