• 제목/요약/키워드: Stokes 수

Search Result 531, Processing Time 0.025 seconds

Effects of Geometry of a Boot-Shaped Rib on Heat Transfer and Pressure Drop (신발형 리브의 형상변화가 열전달 및 압력 강하에 미치는 영향)

  • Seo, Jae-Won;Kim, Jun-Hee;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.3
    • /
    • pp.66-73
    • /
    • 2015
  • This paper deals with a parametric study on boot-shaped ribs in a rectangular cooling channel. Numerical analysis of the flow and heat transfer was performed using three-dimensional Reynolds averaged Navier-Stokes equations with the Speziale, Sarkar and Gatski turbulence model. The parametric study was performed for the parameters, tip width-to rib width, tip height-to-rib height, rib height-to-channel height, and rib height-to-width ratios. To assess the cooling performance and friction loss, Numsselt number and friction factor were defined as the performance parameter, respectively. The results showed that the cooling performance and friction loss were seriously affected by the four geometric parameters.

Numerical Prediction of Turbulent Flow over a Circular Cylinder (원봉주위의 난류유동에 대한 수치해석)

  • Park T. S.
    • Journal of computational fluids engineering
    • /
    • v.7 no.1
    • /
    • pp.20-27
    • /
    • 2002
  • Flow over a circular cylinder is studied numerically using a turbulence model. Based on the κ-ε-f/sub μ/ model of Park and Sung[6], a new damping function is used. The efficiency of the strain dependent damping function is addressed for vortex-shedding flows past a circular cylinder. The mean velocity and Reynolds stresses are compared with available experimental data at Re/sub D/= 3900. Also, the computational results for the Strouhal number are evaluated at several Reynolds number. The predictions by κ-ε-f/sub μ/ model are in good agreement with the experiments.

Numerical Characteristics of Upwind Schemes for Preconditioned Compressible Navier-Stokes Equations (예조건화된 압축성유동 수치기법에서의 풍상차분법의 수치특성 검토)

  • Gill J. H.;Lee D. H.;Choi Y. H.;Kwon J. H.;Lee S. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.95-102
    • /
    • 2002
  • Studies of the numerical characteristics of implicit upwind schemes, such as upwind ADI, Line Gauss-Seidel(LGS) and Point Gauss-Seidel(LU) algorithms, for preconditioned Navier-Stokes equations ate performed. All the algorithms are expressed in approximate factorization form and Von Neumann stability analysis and convergence studies are made. Preconditioning is applied for efficient convergence at low Mach numbers and low Reynolds numbers. For high aspect ratio computations, the ADI and LGS algorithms show efficient and uniform convergence up to moderate aspect ratio if we adopt viscous preconditioning based on min- CFL/max- VNN time-step definition. The LU algorithm, on the other hand, shows serious deterioration in convergence rate as the grid aspect ratio increases. Computations for practical applications also verify these results.

  • PDF

Theoretical Study of Brillouin OTDA using Two Pulse Insets (두 대의 펄스 레이저를 사용한 Brillouin OTDA의 이론적 분석)

  • Hong, Yong-Hyun;Lee, Ho-Joon
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.3
    • /
    • pp.196-201
    • /
    • 2007
  • A theoretical study of Brillouin optical time domain analysis (BOTDA) using two pulse lasers is performed. Even though a point detection is made for a pump pulse period, the dynamic range of BOTDA using two pulse lasers is approximately 5 dB more than that of a pulse and a CW laser when the fiber length is 140 km and the Stokes power is 1 mW.

ANALYSIS OF FIRST-ORDER SYSTEM LEAST-SQUARES FOR THE OPTIMAL CONTROL PROBLEMS FOR THE NAVIER-STOKES EQUATIONS

  • Choi, Young-Mi;Kim, Sang-Dong;Lee, Hyung-Chun;Shin, Byeong-Chun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.4
    • /
    • pp.55-68
    • /
    • 2007
  • First-order least-squares method of a distributed optimal control problem for the incompressible Navier-Stokes equations is considered. An optimality system for the optimal solution are reformulated to the equivalent first-order system by introducing velocity-flux variables and then the least-squares functional corresponding to the system is defined in terms of the sum of the squared $L^2$ norm of the residual equations of the system. The optimal error estimates for least-squares finite element approximations are obtained.

  • PDF

EXACT SOLUTIONS OF GENERALIZED STOKES' PROBLEMS FOR AN INCOMPRESSIBLE COUPLE STRESS FLUID FLOWS

  • SIDDIQUE, IMRAN;UMBREEN, YOUSRA
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.5_6
    • /
    • pp.507-519
    • /
    • 2019
  • The ground for this paper is to examine the generalized Stokes' first and second issues for an incompressible couple pressure liquid under isothermal conditions. Exact solutions for each problem are acquired by using the Laplace transform (LT) with respect to the time variable t and the sine Fourier transform (FT) with respect to the y-variable. Further, a comparison is given of the obtained results and the results of Devakar and Lyengar [1] and by using the four inverse Laplace transform algorithms (Stehfest's, Tzou's, Talbot, Fourier series) in the space time domain utilizing a numerical methodology. Moreover, velocity profiles are plotted and considered for various occasions and distinctive estimations of couple stress parameters. At the end, the outcomes are exhibited by graphs and in tabular forms.

Experimental Study on the Auxiliary Device of Gas - Solid Cyclone (미세분진 제거를 위한 싸이클론 보조 장치 연구)

  • 조영민;이주열
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.423-424
    • /
    • 2000
  • 상대적으로 낮은 미세입자(주로 10$\mu$m이하) 제어효율은 기-고 싸이클론의 최대 약점으로 논의되어 왔다. 이전 연구에서 싸이클론의 유출가스에 포함되어 있는 미세분진 입자들을 2차적으로 분리하고 제거할 수 있는 Post Cyclone(PoC)이라는 장치를 개발하여 그 효용성을 입증하였고(Hoffmann,1996), Mita 등(Mita el. al., 1997)이 이론적 뒷받침을 위한 연구를 진행하여 이론적 모델을 제시하였다. 즉, PoC의 효율은 Reynolds 수와 Stokes 수의 함수로 표시될 수 있을 것으로 추정하였다. (중략)

  • PDF

Three-Dimensional Flow in Turbomachinery (터보기계에서의 3차원 유동)

  • Joo, Won-Gu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.114-126
    • /
    • 1999
  • 터보기계내의 유동은 복잡하며 3차원적 현상을 나타낸다. 3차원 설계에 대한 개념은 간단한 모델로부터 유도될 수 있다. 날개의 스윕, 린, 엔드벤드 기법들은 성능을 개선하는데 사용될 수 있지만 만능적인 도구가 아니라 필요할 때 설계자가 채택할 수 있는 추가적인 설계도구로서 생각해야 한다. 이들을 성공적으로 응용하기 위해서는 이들의 영향에 대한 물리적인 이해를 필요로 한다. 설계된 날개로 흘러가는 유동을 상세하게 연구하는데 3차원 Navier-Stokes 수치계산방법이 유용하게 사용될 수 있을 것이다.

  • PDF

Calculation of a 2-D channel flow with a dimple (딤플이 존재하는 2차원 수로유동의 계산)

  • Choe, Seo-Won;Baek, Yeong-Ho;Kim, Du-Yeon;Gang, Ho-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.49-56
    • /
    • 1997
  • Heat-transfer enhancement is seeked through modifications of fin surface. Real life plate-fin heat exchangers have complex three-dimensional geometries. Fins can have arrays of dimples and are attached to rows of penetrating tubes. To isolate the effect of surface modification, we model the real flow by a two-dimensional channel flow with a dimple on one side. The flow is analysed by solving the incompressible Navier-Stokes equation by a finite volume method on a generalized boundary-fitted coordinate. Results show a trapped vortex inside the dimple for all cases computed. Local maximum of Nusselt number occurs near the downstream end of the dimple, due to such a vortex. Location of the vortex does not change with respect to the wall temperature change, but moved downstream when Reynolds number increases. This, together with the results that in all cases vortex core is somewhat downstream of the dimple center, suggests that the mean flow above continuously feeds the kinetic energy to the recirculating flow. Heat transfer enhancement and pressure losses are studied through analysing the relevant dimensionless parameters like, Nusselt number and friction factor. In all cases computed, dimpled channel flow experiences less pressure loss than two-dimensional Poiseuille flow.

Analysis on Mechanism of Wave Attenuation under Wave-Current Interaction (파랑-흐름의 상호작용에 의한 파랑변형 메커니즘 분석)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.645-650
    • /
    • 2016
  • In this study, we conducted a numerical simulation using Navier-Stokes Solver (HYMO-WASS-3D) in order to analyze wave attenuation under wave-current interaction found in existing hydraulic experiments. It showed that wave energy and wave height are reduced as the wave propagates in coexisting fields between waves and currents. And the wave attenuation became more serious as the velocity of current and thus turbulence intensity were increased at wave-current coexisting field. As well, the wave attenuation became more serious with lower wave height and shorter period when the wave propagates the same distance under interactions between waves and currents.