• 제목/요약/키워드: Stoichiometric calibration

검색결과 7건 처리시간 0.025초

동축류 버너에서 생성된 부분 예혼합 화염을 이용한 화염 온도 측정 검정원 연구 (Study on the partially premixed flames produced by a coflow burner as temperature calibration source)

  • 박철웅;한재원;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.160-167
    • /
    • 2000
  • We investigated a uniform temperature zone, produced by double flame structure of a coflow CH4/air partially premixed flame, to be used as a temperature calibration source for laser diagnostics. A broadband N2 CARS(coherent anti-Stokes Raman spectroscopy) system with a modeless laser was used for temperature measurement. When the stoichiometric ratio was 1.5, we found the uniform temperature zone in radial direction of the flame of which the averaged temperature was 2110 K with standard deviation 24 K. In the stoichiometric ratio range between 2.0 and 2.5, we found very stable temperature-varying zones in vertical direction at the center of the flame. The size of the zone was approximately 15 mm and it covered a temperature range from 300 K to 1900 K. We also suggest that this zone can be used as a calibration source for 2-D PLIF(planar laser induced flurescence) temperature measurement.

  • PDF

이중에너지 CT와 같은 시뮬레이션을 이용한 유효원자번호 추출을 통한 췌장 검출 가능성 연구 (A Study on the Possibility of Pancreas Detection through Extraction of Effective Atomic Number using a Simulation such as Dual-energy CT)

  • 손기홍;이수열;정명애;김대홍
    • 한국방사선학회논문지
    • /
    • 제16권5호
    • /
    • pp.537-543
    • /
    • 2022
  • 본 연구의 목적은 이중에너지 CT를 이용한 유효원자번호 정보를 통한 췌장 검출 가능성 연구이다. 10개의 다양한 인체 등가 물질의 유효원자번호를 Stoichiometric calibration을 통해 추정하였다. Stoichiometric calibration을 위해 저에너지와 고에너지에 해당하는 10개 인체 등가 물질에 대한 HU값을 이용하였다. 이를 바탕으로 반복 알고리즘을 통해 인체 등가 물질에 대한 유효원자번호 영상을 추출하였다. 연구결과에 따르면, 유효원자번호에 따른 감약의 비는 R2값이 0.9999로 추정되었고, Pancreas, water, Liver, Blood, Spongiosa, Cortical bone의 유효원자번호는 이론값과 비교하여 전체적으로 1% 이내의 정확도를 보였다. 췌장암 검사는 조영제를 사용하므로 잠재적인 조영제 부작용 가능성이 있다. 이를 해결하기 위해 조영 증강 없는 이중에너지를 이용한 유효원자번호 추출을 통해 정확하고 안전한 검사에 기여할 수 있을 것으로 사료된다. 본 연구를 바탕으로 향후 연구에서는 임상 영상을 바탕으로 췌장암의 HU값을 이용하여 췌장암 검출에 대한 연구를 수행할 것이다.

동축류 버너에서 생성된 부분 예혼합 화염을 이용한 화염 온도 측정 검정원 연구 (Study on the Partially Premixed Flames Produced by a Coflow Burner as Temperature Calibration Source)

  • 박철웅;한재원;신현동
    • 한국연소학회지
    • /
    • 제5권1호
    • /
    • pp.91-98
    • /
    • 2000
  • We investigated a uniform temperature zone, produced by double flame structure of a co flow CH4/air partially premixed flame, to be used as a temperature calibration source for laser diagnostics. A broadband N2 CARS(coherent anti-Stokes Raman spectroscopy) system with a modeless laser was used for temperature measurement. When the stoichiometric ratio was 1.5, we found the uniform temperature zone in radial direction of the flame of which the averaged temperature was 2110 K with standard deviation 24 K. In the stoichiometric ratio range between 2.0 and 2.5, we found very stable temperature-varying zones in vertical direction at the center of the flame. The size of the zone was approximately 15 mm and it covered a temperature range from 300 K to 1900 K. We also suggest that this zone can be used as a calibration source for 2-D PLIF(planar laser induced flurescence) temperature measurement.

  • PDF

Effect of Improving Accuracy for Effective Atomic number (EAN) and Relative Electron Density (RED) extracted with Polynomial-based Calibration in Dual-energy CT

  • Daehong Kim;Il-Hoon Cho;Mi-jo Lee
    • 한국방사선학회논문지
    • /
    • 제17권7호
    • /
    • pp.1017-1023
    • /
    • 2023
  • The purpose of this study was to improve the accuracy of effective atomic number (EAN) and relative electron density (RED) using a polynomial-based calibration method using dual-energy CT images. A phantom composed of 11 tissue-equivalent materials was acquired with dual-energy CT to obtain low- and high-energy images. Using the acquired dual-energy images, the ratio of attenuation of low- and high-energy images for EAN was calibrated based on Stoichiometric, Quadratic, Cubic, Quartic polynomials. EAN and RED were extracted using each calibration method. As a result of the experiment, the average error of EAN using Cubic polynomial-based calibration was minimum. Even in the RED image extracted using EAN, the error of the Cubic polynomial-based RED was minimum. Cubic polynomial-based calibration contributes to improving the accuracy of EAN and RED, and would like to contribute to accurate diagnosis of lesions in CT examinations or quantification of various materials in the human body.

연소진단 검정원으로써 평면화염 버너의 연소특성 연구 (The study on the combustion characteristics of a planar flame burner as a calibration source of laser diagnostics)

  • 길용석;정석호;이병준;한재원
    • 대한기계학회논문집B
    • /
    • 제20권10호
    • /
    • pp.3355-3360
    • /
    • 1996
  • To provide standard data of temperature and species concentration in a flame for calibrating the laser based combustion diagnostics, we investigated combustion characteristics of a flat flame burner(Mckennar Product). For various stoichiometric ratios we measured temperature and concentration of OH in the premixed methane/air flame with Coherent anti-Stokes Raman spectroscopy and laser induced fluorescence technique, respectively. Assuming the chemical equilibrium condition at the measured temperature, the mole fraction of the OH radical in the flame was obtained and compared with numerical analysis.

A Method for Absolute Determination of the Surface Areal Density of Functional Groups in Organic Thin Films

  • Min, Hyegeun;Son, Jin Gyeong;Kim, Jeong Won;Yu, Hyunung;Lee, Tae Geol;Moon, Dae Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권3호
    • /
    • pp.793-797
    • /
    • 2014
  • To develop a methodology for absolute determination of the surface areal density of functional groups on organic and bio thin films, medium energy ion scattering (MEIS) spectroscopy was utilized to provide references for calibration of X-ray photoelectron spectroscopy (XPS) or Fourier transformation-infrared (FT-IR) intensities. By using the MEIS, XPS, and FT-IR techniques, we were able to analyze the organic thin film of a Ru dye compound ($C_{58}H_{86}O_8N_8S_2Ru$), which consists of one Ru atom and various stoichiometric functional groups. From the MEIS analysis, the absolute surface areal density of Ru atoms (or Ru dye molecules) was determined. The surface areal densities of stoichiometric functional groups in the Ru dye compound were used as references for the calibration of XPS and FT-IR intensities for each functional group. The complementary use of MEIS, XPS, and FT-IR to determine the absolute surface areal density of functional groups on organic and bio thin films will be useful for more reliable development of applications based on organic thin films in areas such as flexible displays, solar cells, organic sensors, biomaterials, and biochips.

척추 방사선수술 시 다엽콜리메이터 위치 오차의 임상적 위험성 평가 (Evaluation of Clinical Risk according to Multi-Leaf Collimator Positioning Error in Spinal Radiosurgery)

  • 강동진;오건;신영주;강진규;정재용;이보람
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제46권6호
    • /
    • pp.527-533
    • /
    • 2023
  • The purpose of this study is to evaluate the clinical risk of spinal radiosurgery by calculating the dose difference due to dose calculation algorithm and multi-leaf collimator positioning error. The images acquired by the CT simulator were recalculated by correcting the multi-leaf collimator position in the dose verification program created using MATLAB and applying stoichiometric calibration and Monte Carlo algorithm. With multi-leaf collimator positioning error, the clinical target volume (CTV) showed a dose difference of up to 13% in the dose delivered to the 95% volume, while the gross tumor volume (GTV) showed a dose difference of 9%. The average dose delivered to the total volume showed dose variation from -8.9% to 9% and -10.1% to 10.2% for GTV and CTV, respectively. The maximum dose delivered to the total volume of the spinal cord showed a dose difference from -14.2% to 19.6%, and the dose delivered to the 0.35 ㎤ volume showed a dose difference from -15.5% to 19.4%. In future research, automating the linkage between treatment planning systems and dose verification programs would be useful for spinal radiosurgery.