• Title/Summary/Keyword: Stock trend prediction

Search Result 20, Processing Time 0.019 seconds

A Study on Stock Trend Determination in Stock Trend Prediction

  • Lim, Chungsoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.35-44
    • /
    • 2020
  • In this study, we analyze how stock trend determination affects trend prediction accuracy. In stock markets, successful investment requires accurate stock price trend prediction. Therefore, a volume of research has been conducted to improve the trend prediction accuracy. For example, information extracted from SNS (social networking service) and news articles by text mining algorithms is used to enhance the prediction accuracy. Moreover, various machine learning algorithms have been utilized. However, stock trend determination has not been properly analyzed, and conventionally used methods have been employed repeatedly. For this reason, we formulate the trend determination as a moving average-based procedure and analyze its impact on stock trend prediction accuracy. The analysis reveals that trend determination makes prediction accuracy vary as much as 47% and that prediction accuracy is proportional to and inversely proportional to reference window size and target window size, respectively.

Fair Performance Evaluation Method for Stock Trend Prediction Models (주가 경향 예측 모델의 공정한 성능 평가 방법)

  • Lim, Chungsoo
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.10
    • /
    • pp.702-714
    • /
    • 2020
  • Stock investment is a personal investment technique that has gathered tremendous interest since the reduction in interest rates and tax exemption. However, it is risky especially for those who do not have expert knowledge on stock volatility. Therefore, it is well understood that accurate stock trend prediction can greatly help stock investment, giving birth to a volume of research work in the field. In order to compare different research works and to optimize hyper-parameters for prediction models, it is required to have an evaluation standard that can accurately assess performances of prediction models. However, little research has been done in the area, and conventionally used methods have been employed repeatedly without being rigorously validated. For this reason, we first analyze performance evaluation of stock trend prediction with respect to performance metrics and data composition, and propose a fair evaluation method based on prediction disparity ratio.

A Study on the Prediction Model of Stock Price Index Trend based on GA-MSVM that Simultaneously Optimizes Feature and Instance Selection (입력변수 및 학습사례 선정을 동시에 최적화하는 GA-MSVM 기반 주가지수 추세 예측 모형에 관한 연구)

  • Lee, Jong-sik;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.147-168
    • /
    • 2017
  • There have been many studies on accurate stock market forecasting in academia for a long time, and now there are also various forecasting models using various techniques. Recently, many attempts have been made to predict the stock index using various machine learning methods including Deep Learning. Although the fundamental analysis and the technical analysis method are used for the analysis of the traditional stock investment transaction, the technical analysis method is more useful for the application of the short-term transaction prediction or statistical and mathematical techniques. Most of the studies that have been conducted using these technical indicators have studied the model of predicting stock prices by binary classification - rising or falling - of stock market fluctuations in the future market (usually next trading day). However, it is also true that this binary classification has many unfavorable aspects in predicting trends, identifying trading signals, or signaling portfolio rebalancing. In this study, we try to predict the stock index by expanding the stock index trend (upward trend, boxed, downward trend) to the multiple classification system in the existing binary index method. In order to solve this multi-classification problem, a technique such as Multinomial Logistic Regression Analysis (MLOGIT), Multiple Discriminant Analysis (MDA) or Artificial Neural Networks (ANN) we propose an optimization model using Genetic Algorithm as a wrapper for improving the performance of this model using Multi-classification Support Vector Machines (MSVM), which has proved to be superior in prediction performance. In particular, the proposed model named GA-MSVM is designed to maximize model performance by optimizing not only the kernel function parameters of MSVM, but also the optimal selection of input variables (feature selection) as well as instance selection. In order to verify the performance of the proposed model, we applied the proposed method to the real data. The results show that the proposed method is more effective than the conventional multivariate SVM, which has been known to show the best prediction performance up to now, as well as existing artificial intelligence / data mining techniques such as MDA, MLOGIT, CBR, and it is confirmed that the prediction performance is better than this. Especially, it has been confirmed that the 'instance selection' plays a very important role in predicting the stock index trend, and it is confirmed that the improvement effect of the model is more important than other factors. To verify the usefulness of GA-MSVM, we applied it to Korea's real KOSPI200 stock index trend forecast. Our research is primarily aimed at predicting trend segments to capture signal acquisition or short-term trend transition points. The experimental data set includes technical indicators such as the price and volatility index (2004 ~ 2017) and macroeconomic data (interest rate, exchange rate, S&P 500, etc.) of KOSPI200 stock index in Korea. Using a variety of statistical methods including one-way ANOVA and stepwise MDA, 15 indicators were selected as candidate independent variables. The dependent variable, trend classification, was classified into three states: 1 (upward trend), 0 (boxed), and -1 (downward trend). 70% of the total data for each class was used for training and the remaining 30% was used for verifying. To verify the performance of the proposed model, several comparative model experiments such as MDA, MLOGIT, CBR, ANN and MSVM were conducted. MSVM has adopted the One-Against-One (OAO) approach, which is known as the most accurate approach among the various MSVM approaches. Although there are some limitations, the final experimental results demonstrate that the proposed model, GA-MSVM, performs at a significantly higher level than all comparative models.

Stock Market Prediction Using Sentiment on YouTube Channels (유튜브 주식채널의 감성을 활용한 코스피 수익률 등락 예측)

  • Su-Ji, Cho;Cheol-Won Yang;Ki-Kwang Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.102-108
    • /
    • 2023
  • Recently in Korea, YouTube stock channels increased rapidly due to the high social interest in the stock market during the COVID-19 period. Accordingly, the role of new media channels such as YouTube is attracting attention in the process of generating and disseminating market information. Nevertheless, prior studies on the market forecasting power of YouTube stock channels remain insignificant. In this study, the market forecasting power of the information from the YouTube stock channel was examined and compared with traditional news media. To measure information from each YouTube stock channel and news media, positive and negative opinions were extracted. As a result of the analysis, opinion in channels operated by media outlets were found to be leading indicators of KOSPI market returns among YouTube stock channels. The prediction accuracy by using logistic regression model show 74%. On the other hand, Sampro TV, a popular YouTube stock channel, and the traditional news media simply reported the market situation of the day or instead showed a tendency to lag behind the market. This study is differentiated from previous studies in that it verified the market predictive power of the information provided by the YouTube stock channel, which has recently shown a growing trend in Korea. In the future, the results of advanced analysis can be confirmed by expanding the research results for individual stocks.

Deep Learning-Based Stock Fluctuation Prediction According to Overseas Indices and Trading Trend by Investors (해외지수와 투자자별 매매 동향에 따른 딥러닝 기반 주가 등락 예측)

  • Kim, Tae Seung;Lee, Soowon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.9
    • /
    • pp.367-374
    • /
    • 2021
  • Stock price prediction is a subject of research in various fields such as economy, statistics, computer engineering, etc. In recent years, researches on predicting the movement of stock prices by learning artificial intelligence models from various indicators such as basic indicators and technical indicators have become active. This study proposes a deep learning model that predicts the ups and downs of KOSPI from overseas indices such as S&P500, past KOSPI indices, and trading trends by KOSPI investors. The proposed model extracts a latent variable using a stacked auto-encoder to predict stock price fluctuations, and predicts the fluctuation of the closing price compared to the market price of the day by learning an LSTM suitable for learning time series data from the extracted latent variable to decide to buy or sell based on the value. As a result of comparing the returns and prediction accuracy of the proposed model and the comparative models, the proposed model showed better performance than the comparative models.

Deep Learning-based Stock Price Prediction Using Limit Order Books and News Headlines (호가창과 뉴스 헤드라인을 이용한 딥러닝 기반 주가 변동 예측 기법)

  • Ryoo, Euirim;Lee, Ki Yong;Chung, Yon Dohn
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.1
    • /
    • pp.63-79
    • /
    • 2022
  • Recently, various studies have been conducted on stock price prediction using machine learning and deep learning techniques. Among these studies, the latest studies have attempted to predict stock prices using limit order books, which contain buy and sell order information of stocks. However, most of the studies using limit order books consider only the trend of limit order books over the most recent period of a specified length, and few studies consider both the medium and short term trends of limit order books. Therefore, in this paper, we propose a deep learning-based prediction model that predicts stock price more accurately by considering both the medium and short term trends of limit order books. Moreover, the proposed model considers news headlines during the same period to reflect the qualitative status of the company in the stock price prediction. The proposed model extracts the features of changes in limit order books with CNNs and the features of news headlines using Word2vec, and combines these information to predict whether a particular company's stock will rise or fall the next day. We conducted experiments to predict the daily stock price fluctuations of five stocks (Amazon, Apple, Facebook, Google, Tesla) with the proposed model using the real NASDAQ limit order book data and news headline data, and the proposed model improved the accuracy by up to 17.66%p and the average by 14.47%p on average. In addition, we conducted a simulated investment with the proposed model and earned a minimum of $492.46 and a maximum of $2,840.93 depending on the stock for 21 business days.

R-Trader: An Automatic Stock Trading System based on Reinforcement learning (R-Trader: 강화 학습에 기반한 자동 주식 거래 시스템)

  • 이재원;김성동;이종우;채진석
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.11
    • /
    • pp.785-794
    • /
    • 2002
  • Automatic stock trading systems should be able to solve various kinds of optimization problems such as market trend prediction, stock selection, and trading strategies, in a unified framework. But most of the previous trading systems based on supervised learning have a limit in the ultimate performance, because they are not mainly concerned in the integration of those subproblems. This paper proposes a stock trading system, called R-Trader, based on reinforcement teaming, regarding the process of stock price changes as Markov decision process (MDP). Reinforcement learning is suitable for Joint optimization of predictions and trading strategies. R-Trader adopts two popular reinforcement learning algorithms, temporal-difference (TD) and Q, for selecting stocks and optimizing other trading parameters respectively. Technical analysis is also adopted to devise the input features of the system and value functions are approximated by feedforward neural networks. Experimental results on the Korea stock market show that the proposed system outperforms the market average and also a simple trading system trained by supervised learning both in profit and risk management.

Prediction of Cryptocurrency Price Trend Using Gradient Boosting (그래디언트 부스팅을 활용한 암호화폐 가격동향 예측)

  • Heo, Joo-Seong;Kwon, Do-Hyung;Kim, Ju-Bong;Han, Youn-Hee;An, Chae-Hun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.10
    • /
    • pp.387-396
    • /
    • 2018
  • Stock price prediction has been a difficult problem to solve. There have been many studies to predict stock price scientifically, but it is still impossible to predict the exact price. Recently, a variety of types of cryptocurrency has been developed, beginning with Bitcoin, which is technically implemented as the concept of distributed ledger. Various approaches have been attempted to predict the price of cryptocurrency. Especially, it is various from attempts to stock prediction techniques in traditional stock market, to attempts to apply deep learning and reinforcement learning. Since the market for cryptocurrency has many new features that are not present in the existing traditional stock market, there is a growing demand for new analytical techniques suitable for the cryptocurrency market. In this study, we first collect and process seven cryptocurrency price data through Bithumb's API. Then, we use the gradient boosting model, which is a data-driven learning based machine learning model, and let the model learn the price data change of cryptocurrency. We also find the most optimal model parameters in the verification step, and finally evaluate the prediction performance of the cryptocurrency price trends.

A Study on Determining the Prediction Models for Predicting Stock Price Movement (주가 운동양태 예측을 위한 예측 모델결정에 관한 연구)

  • Jeon Jin-Ho;Cho Young-Hee;Lee Gye-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.6
    • /
    • pp.26-32
    • /
    • 2006
  • Predictions on stock prices have been a hot issue in stock market as people get more interested in stock investments. Assuming that the stock price is moving by a trend in a specific pattern, we believe that a model can be derived from past data to describe the change of the price. The best model can help predict the future stock price. In this paper, our model derivation is based on automata over temporal data to which the model is explicable. We use Bayesian Information Criterion(BIC) to determine the best number of states of the model. We confirm the validity of Bayesian Information Criterion and apply it to building models over stock price indices. The model derived for predicting daily stock price are compared with real price. The comparisons show the predictions have been found to be successful over the data sets we chose.

  • PDF

Modeling and Prediction of Time Series Data based on Markov Model (마코프 모델에 기반한 시계열 자료의 모델링 및 예측)

  • Cho, Young-Hee;Lee, Gye-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.225-233
    • /
    • 2011
  • Stock market prices, economic indices, trends and changes of social phenomena, etc. are categorized as time series data. Research on time series data has been prevalent for a while as it could not only lead to valuable representation of data but also provide future trends as well as changes in direction. We take a conventional model based approach, known as Markov chain modeling for the prediction on stock market prices. To improve prediction accuracy, we apply Markov modeling over carefully selected intervals of training data to fit the trend under consideration to the model. Another method we take is to apply clustering to data and build models of the resultant clusters. We confirmed that clustered models are better off in predicting, however, with the loss of prediction rate.