• Title/Summary/Keyword: Stock price prediction

Search Result 154, Processing Time 0.023 seconds

Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms (M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발)

  • Yang, Hoonseok;Kim, Sunwoong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.63-83
    • /
    • 2019
  • Investors prefer to look for trading points based on the graph shown in the chart rather than complex analysis, such as corporate intrinsic value analysis and technical auxiliary index analysis. However, the pattern analysis technique is difficult and computerized less than the needs of users. In recent years, there have been many cases of studying stock price patterns using various machine learning techniques including neural networks in the field of artificial intelligence(AI). In particular, the development of IT technology has made it easier to analyze a huge number of chart data to find patterns that can predict stock prices. Although short-term forecasting power of prices has increased in terms of performance so far, long-term forecasting power is limited and is used in short-term trading rather than long-term investment. Other studies have focused on mechanically and accurately identifying patterns that were not recognized by past technology, but it can be vulnerable in practical areas because it is a separate matter whether the patterns found are suitable for trading. When they find a meaningful pattern, they find a point that matches the pattern. They then measure their performance after n days, assuming that they have bought at that point in time. Since this approach is to calculate virtual revenues, there can be many disparities with reality. The existing research method tries to find a pattern with stock price prediction power, but this study proposes to define the patterns first and to trade when the pattern with high success probability appears. The M & W wave pattern published by Merrill(1980) is simple because we can distinguish it by five turning points. Despite the report that some patterns have price predictability, there were no performance reports used in the actual market. The simplicity of a pattern consisting of five turning points has the advantage of reducing the cost of increasing pattern recognition accuracy. In this study, 16 patterns of up conversion and 16 patterns of down conversion are reclassified into ten groups so that they can be easily implemented by the system. Only one pattern with high success rate per group is selected for trading. Patterns that had a high probability of success in the past are likely to succeed in the future. So we trade when such a pattern occurs. It is a real situation because it is measured assuming that both the buy and sell have been executed. We tested three ways to calculate the turning point. The first method, the minimum change rate zig-zag method, removes price movements below a certain percentage and calculates the vertex. In the second method, high-low line zig-zag, the high price that meets the n-day high price line is calculated at the peak price, and the low price that meets the n-day low price line is calculated at the valley price. In the third method, the swing wave method, the high price in the center higher than n high prices on the left and right is calculated as the peak price. If the central low price is lower than the n low price on the left and right, it is calculated as valley price. The swing wave method was superior to the other methods in the test results. It is interpreted that the transaction after checking the completion of the pattern is more effective than the transaction in the unfinished state of the pattern. Genetic algorithms(GA) were the most suitable solution, although it was virtually impossible to find patterns with high success rates because the number of cases was too large in this simulation. We also performed the simulation using the Walk-forward Analysis(WFA) method, which tests the test section and the application section separately. So we were able to respond appropriately to market changes. In this study, we optimize the stock portfolio because there is a risk of over-optimized if we implement the variable optimality for each individual stock. Therefore, we selected the number of constituent stocks as 20 to increase the effect of diversified investment while avoiding optimization. We tested the KOSPI market by dividing it into six categories. In the results, the portfolio of small cap stock was the most successful and the high vol stock portfolio was the second best. This shows that patterns need to have some price volatility in order for patterns to be shaped, but volatility is not the best.

The Effect of Managerial Overconfidence on Crash Risk (경영자과신이 주가급락위험에 미치는 영향)

  • Ryu, Haeyoung
    • The Journal of Industrial Distribution & Business
    • /
    • v.8 no.5
    • /
    • pp.87-93
    • /
    • 2017
  • Purpose - This paper investigates whether managerial overconfidence is associated with firm-specific crash risk. Overconfidence leads managers to overestimate the returns of their investment projects, and misperceive negative net present value projects as value creating. They even use voluntary disclosures to convey their optimistic beliefs about the firms' long-term prospects to the stock market. Thus, the overconfidence bias can lead to managerial bad news hoarding behavior. When bad news accumulates and crosses some tipping point, it will come out all at once, resulting in a stock price crash. Research design, data and methodology - 7,385 firm-years used for the main analysis are from the KIS Value database between 2006 and 2013. This database covers KOSPI-listed and KOSDAQ-listed firms in Korea. The proxy for overconfidence is based on excess investment in assets. A residual from the regression of total asset growth on sales growth run by industry-year is used as an independent variable. If a firm has at least one crash week during a year, it is referred to as a high crash risk firm. The dependant variable is a dummy variable that equals 1 if a firm is a high crash risk firm, and zero otherwise. After explaining the relationship between managerial overconfidence and crash risk, the total sample was divided into two sub-samples; chaebol firms and non-chaebol firms. The relation between how I overconfidence and crash risk varies with business group affiliation was investigated. Results - The results showed that managerial overconfidence is positively related to crash risk. Specifically, the coefficient of OVERC is significantly positive, supporting the prediction. The results are strong and robust in non-chaebol firms. Conclusions - The results show that firms with overconfident managers are likely to experience stock price crashes. This study is related to past literature that examines the impact of managerial overconfidence on the stock market. This study contributes to the literature by examining whether overconfidence can explain a firm's future crashes.

Deep Learning-Based Short-Term Time Series Forecasting Modeling for Palm Oil Price Prediction (팜유 가격 예측을 위한 딥러닝 기반 단기 시계열 예측 모델링)

  • Sungho Bae;Myungsun Kim;Woo-Hyuk Jung;Jihwan Woo
    • Information Systems Review
    • /
    • v.26 no.2
    • /
    • pp.45-57
    • /
    • 2024
  • This study develops a deep learning-based methodology for predicting Crude Palm Oil (CPO) prices. Palm oil is an essential resource across various industries due to its yield and economic efficiency, leading to increased industrial interest in its price volatility. While numerous studies have been conducted on palm oil price prediction, most rely on time series forecasting, which has inherent accuracy limitations. To address the main limitation of traditional methods-the absence of stationarity-this research introduces a novel model that uses the ratio of future prices to current prices as the dependent variable. This approach, inspired by return modeling in stock price predictions, demonstrates superior performance over simple price prediction. Additionally, the methodology incorporates the consideration of lag values of independent variables, a critical factor in multivariate time series forecasting, to eliminate unnecessary noise and enhance the stability of the prediction model. This research not only significantly improves the accuracy of palm oil price prediction but also offers an applicable approach for other economic forecasting issues where time series data is crucial, providing substantial value to the industry.

Prediction of KOSPI using Data Editing Techniques and Case-based Reasoning (자료편집기법과 사례기반추론을 이용한 한국종합주가지수 예측)

  • Kim, Kyoung-Jae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.287-295
    • /
    • 2007
  • This paper proposes a novel data editing techniques with genetic algorithm (GA) in case-based reasoning (CBR) for the prediction of Korea Stock Price Index (KOSPI). CBR has been widely used in various areas because of its convenience and strength in compelax problem solving. Nonetheless, compared to other machine teaming techniques, CBR has been criticized because of its low prediction accuracy. Generally, in order to obtain successful results from CBR, effective retrieval of useful prior cases for the given problem is essential. However. designing a good matching and retrieval mechanism for CBR system is still a controversial research issue. In this paper, the GA optimizes simultaneously feature weights and a selection task for relevant instances for achieving good matching and retrieval in a CBR system. This study applies the proposed model to stock market analysis. Experimental results show that the GA approach is a promising method for data editing in CBR.

  • PDF

A Study on Commodity Asset Investment Model Based on Machine Learning Technique (기계학습을 활용한 상품자산 투자모델에 관한 연구)

  • Song, Jin Ho;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.127-146
    • /
    • 2017
  • Services using artificial intelligence have begun to emerge in daily life. Artificial intelligence is applied to products in consumer electronics and communications such as artificial intelligence refrigerators and speakers. In the financial sector, using Kensho's artificial intelligence technology, the process of the stock trading system in Goldman Sachs was improved. For example, two stock traders could handle the work of 600 stock traders and the analytical work for 15 people for 4weeks could be processed in 5 minutes. Especially, big data analysis through machine learning among artificial intelligence fields is actively applied throughout the financial industry. The stock market analysis and investment modeling through machine learning theory are also actively studied. The limits of linearity problem existing in financial time series studies are overcome by using machine learning theory such as artificial intelligence prediction model. The study of quantitative financial data based on the past stock market-related numerical data is widely performed using artificial intelligence to forecast future movements of stock price or indices. Various other studies have been conducted to predict the future direction of the market or the stock price of companies by learning based on a large amount of text data such as various news and comments related to the stock market. Investing on commodity asset, one of alternative assets, is usually used for enhancing the stability and safety of traditional stock and bond asset portfolio. There are relatively few researches on the investment model about commodity asset than mainstream assets like equity and bond. Recently machine learning techniques are widely applied on financial world, especially on stock and bond investment model and it makes better trading model on this field and makes the change on the whole financial area. In this study we made investment model using Support Vector Machine among the machine learning models. There are some researches on commodity asset focusing on the price prediction of the specific commodity but it is hard to find the researches about investment model of commodity as asset allocation using machine learning model. We propose a method of forecasting four major commodity indices, portfolio made of commodity futures, and individual commodity futures, using SVM model. The four major commodity indices are Goldman Sachs Commodity Index(GSCI), Dow Jones UBS Commodity Index(DJUI), Thomson Reuters/Core Commodity CRB Index(TRCI), and Rogers International Commodity Index(RI). We selected each two individual futures among three sectors as energy, agriculture, and metals that are actively traded on CME market and have enough liquidity. They are Crude Oil, Natural Gas, Corn, Wheat, Gold and Silver Futures. We made the equally weighted portfolio with six commodity futures for comparing with other commodity indices. We set the 19 macroeconomic indicators including stock market indices, exports & imports trade data, labor market data, and composite leading indicators as the input data of the model because commodity asset is very closely related with the macroeconomic activities. They are 14 US economic indicators, two Chinese economic indicators and two Korean economic indicators. Data period is from January 1990 to May 2017. We set the former 195 monthly data as training data and the latter 125 monthly data as test data. In this study, we verified that the performance of the equally weighted commodity futures portfolio rebalanced by the SVM model is better than that of other commodity indices. The prediction accuracy of the model for the commodity indices does not exceed 50% regardless of the SVM kernel function. On the other hand, the prediction accuracy of equally weighted commodity futures portfolio is 53%. The prediction accuracy of the individual commodity futures model is better than that of commodity indices model especially in agriculture and metal sectors. The individual commodity futures portfolio excluding the energy sector has outperformed the three sectors covered by individual commodity futures portfolio. In order to verify the validity of the model, it is judged that the analysis results should be similar despite variations in data period. So we also examined the odd numbered year data as training data and the even numbered year data as test data and we confirmed that the analysis results are similar. As a result, when we allocate commodity assets to traditional portfolio composed of stock, bond, and cash, we can get more effective investment performance not by investing commodity indices but by investing commodity futures. Especially we can get better performance by rebalanced commodity futures portfolio designed by SVM model.

Hybrid Machine Learning Model for Predicting the Direction of KOSPI Securities (코스피 방향 예측을 위한 하이브리드 머신러닝 모델)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.6
    • /
    • pp.9-16
    • /
    • 2021
  • In the past, there have been various studies on predicting the stock market by machine learning techniques using stock price data and financial big data. As stock index ETFs that can be traded through HTS and MTS are created, research on predicting stock indices has recently attracted attention. In this paper, machine learning models for KOSPI's up and down predictions are implemented separately. These models are optimized through a grid search of their control parameters. In addition, a hybrid machine learning model that combines individual models is proposed to improve the precision and increase the ETF trading return. The performance of the predictiion models is evaluated by the accuracy and the precision that determines the ETF trading return. The accuracy and precision of the hybrid up prediction model are 72.1 % and 63.8 %, and those of the down prediction model are 79.8% and 64.3%. The precision of the hybrid down prediction model is improved by at least 14.3 % and at most 20.5 %. The hybrid up and down prediction models show an ETF trading return of 10.49%, and 25.91%, respectively. Trading inverse×2 and leverage ETF can increase the return by 1.5 to 2 times. Further research on a down prediction machine learning model is expected to increase the rate of return.

Forecasting algorithm using an improved genetic algorithm based on backpropagation neural network model (개선된 유전자 역전파 신경망에 기반한 예측 알고리즘)

  • Yoon, YeoChang;Jo, Na Rae;Lee, Sung Duck
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1327-1336
    • /
    • 2017
  • In this study, the problems in the short term stock market forecasting are analyzed and the feasibility of the ARIMA method and the backpropagation neural network is discussed. Neural network and genetic algorithm in short term stock forecasting is also examined. Since the backpropagation algorithm often falls into the local minima trap, we optimized the backpropagation neural network and established a genetic algorithm based on backpropagation neural network for forecasting model in order to achieve high forecasting accuracy. The experiments adopted the korea composite stock price index series to make prediction and provided corresponding error analysis. The results show that the genetic algorithm based on backpropagation neural network model proposed in this study has a significant improvement in stock price index series forecasting accuracy.

The Default Prediction Model using the Stock Price Data (주가정보를 활용한 부도예측모형에 관한 연구)

  • 송영래;김기흥;황성태;오형식
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.1059-1065
    • /
    • 2002
  • 주가자료를 활용한 부도예측모형인 KMV EDF 모형을 기반으로 일별주가자료와 기업재무자료를 이용하여, 모형에 필요한 적절한 모수를 찾고 모델링을 하였으며, 적절성을 검증했다. 그리고, 기존의 연구에 따라 월평균주가자료를 이용한 경우, 모형에 왜곡이 가해질 수 있다는 점을 지적했다. 또한, 민감도 분석을 통하여 본 모형의 부도예측값에 미치는 주요한 검증하고, 실용적으로 사용할 수 있는 간단한 민감도분석 Tool을 설계하였다.

  • PDF

A Study on the Prediction Model of Stock Price Index Trend based on GA-MSVM that Simultaneously Optimizes Feature and Instance Selection (입력변수 및 학습사례 선정을 동시에 최적화하는 GA-MSVM 기반 주가지수 추세 예측 모형에 관한 연구)

  • Lee, Jong-sik;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.147-168
    • /
    • 2017
  • There have been many studies on accurate stock market forecasting in academia for a long time, and now there are also various forecasting models using various techniques. Recently, many attempts have been made to predict the stock index using various machine learning methods including Deep Learning. Although the fundamental analysis and the technical analysis method are used for the analysis of the traditional stock investment transaction, the technical analysis method is more useful for the application of the short-term transaction prediction or statistical and mathematical techniques. Most of the studies that have been conducted using these technical indicators have studied the model of predicting stock prices by binary classification - rising or falling - of stock market fluctuations in the future market (usually next trading day). However, it is also true that this binary classification has many unfavorable aspects in predicting trends, identifying trading signals, or signaling portfolio rebalancing. In this study, we try to predict the stock index by expanding the stock index trend (upward trend, boxed, downward trend) to the multiple classification system in the existing binary index method. In order to solve this multi-classification problem, a technique such as Multinomial Logistic Regression Analysis (MLOGIT), Multiple Discriminant Analysis (MDA) or Artificial Neural Networks (ANN) we propose an optimization model using Genetic Algorithm as a wrapper for improving the performance of this model using Multi-classification Support Vector Machines (MSVM), which has proved to be superior in prediction performance. In particular, the proposed model named GA-MSVM is designed to maximize model performance by optimizing not only the kernel function parameters of MSVM, but also the optimal selection of input variables (feature selection) as well as instance selection. In order to verify the performance of the proposed model, we applied the proposed method to the real data. The results show that the proposed method is more effective than the conventional multivariate SVM, which has been known to show the best prediction performance up to now, as well as existing artificial intelligence / data mining techniques such as MDA, MLOGIT, CBR, and it is confirmed that the prediction performance is better than this. Especially, it has been confirmed that the 'instance selection' plays a very important role in predicting the stock index trend, and it is confirmed that the improvement effect of the model is more important than other factors. To verify the usefulness of GA-MSVM, we applied it to Korea's real KOSPI200 stock index trend forecast. Our research is primarily aimed at predicting trend segments to capture signal acquisition or short-term trend transition points. The experimental data set includes technical indicators such as the price and volatility index (2004 ~ 2017) and macroeconomic data (interest rate, exchange rate, S&P 500, etc.) of KOSPI200 stock index in Korea. Using a variety of statistical methods including one-way ANOVA and stepwise MDA, 15 indicators were selected as candidate independent variables. The dependent variable, trend classification, was classified into three states: 1 (upward trend), 0 (boxed), and -1 (downward trend). 70% of the total data for each class was used for training and the remaining 30% was used for verifying. To verify the performance of the proposed model, several comparative model experiments such as MDA, MLOGIT, CBR, ANN and MSVM were conducted. MSVM has adopted the One-Against-One (OAO) approach, which is known as the most accurate approach among the various MSVM approaches. Although there are some limitations, the final experimental results demonstrate that the proposed model, GA-MSVM, performs at a significantly higher level than all comparative models.

Conflict of Interests and Analysts' Forecast (이해상충과 애널리스트 예측)

  • Park, Chang-Gyun;Youn, Taehoon
    • KDI Journal of Economic Policy
    • /
    • v.31 no.1
    • /
    • pp.239-276
    • /
    • 2009
  • The paper investigates the possible relationship between earnings prediction by security analysts and special ownership ties that link security companies those analysts belong to and firms under analysis. "Security analysts" are known best for their role as information producers in stock markets where imperfect information is prevalent and transaction costs are high. In such a market, changes in the fundamental value of a company are not spontaneously reflected in the stock price, and the security analysts actively produce and distribute the relevant information crucial for the price mechanism to operate efficiently. Therefore, securing the fairness and accuracy of information they provide is very important for efficiencyof resource allocation as well as protection of investors who are excluded from the special relationship. Evidence of systematic distortion of information by the special tie naturally calls for regulatory intervention, if found. However, one cannot presuppose the existence of distorted information based on the common ownership between the appraiser and the appraisee. Reputation effect is especially cherished by security firms and among analysts as indispensable intangible asset in the industry, and the incentive to maintain good reputation by providing accurate earnings prediction may overweigh the incentive to offer favorable rating or stock recommendation for the firms that are affiliated by common ownership. This study shares the theme of existing literature concerning the effect of conflict of interests on the accuracy of analyst's predictions. This study, however, focuses on the potential conflict of interest situation that may originate from the Korea-specific ownership structure of large conglomerates. Utilizing an extensive database of analysts' reports provided by WiseFn(R) in Korea, we perform empirical analysis of potential relationship between earnings prediction and common ownership. We first analyzed the prediction bias index which tells how optimistic or friendly the analyst's prediction is compared to the realized earnings. It is shown that there exists no statistically significant relationship between the prediction bias and common ownership. This is a rather surprising result since it is observed that the frequency of positive prediction bias is higher with such ownership tie. Next, we analyzed the prediction accuracy index which shows how accurate the analyst's prediction is compared to the realized earnings regardless of its sign. It is also concluded that there is no significant association between the accuracy ofearnings prediction and special relationship. We interpret the results implying that market discipline based on reputation effect is working in Korean stock market in the sense that security companies do not seem to be influenced by an incentive to offer distorted information on affiliated firms. While many of the existing studies confirm the relationship between the ability of the analystand the accuracy of the analyst's prediction, these factors cannot be controlled in the above analysis due to the lack of relevant data. As an indirect way to examine the possibility that such relationship might have distorted the result, we perform an additional but identical analysis based on a sub-sample consisting only of reports by best analysts. The result also confirms the earlier conclusion that the common ownership structure does not affect the accuracy and bias of earnings prediction by the analyst.

  • PDF