• 제목/요약/키워드: Stock price prediction

검색결과 154건 처리시간 0.022초

준지도 학습 및 신경망 알고리즘을 이용한 전기가격 예측 (Electricity Price Prediction Based on Semi-Supervised Learning and Neural Network Algorithms)

  • 김항석;신현정
    • 대한산업공학회지
    • /
    • 제39권1호
    • /
    • pp.30-45
    • /
    • 2013
  • Predicting monthly electricity price has been a significant factor of decision-making for plant resource management, fuel purchase plan, plans to plant, operating plan budget, and so on. In this paper, we propose a sophisticated prediction model in terms of the technique of modeling and the variety of the collected variables. The proposed model hybridizes the semi-supervised learning and the artificial neural network algorithms. The former is the most recent and a spotlighted algorithm in data mining and machine learning fields, and the latter is known as one of the well-established algorithms in the fields. Diverse economic/financial indexes such as the crude oil prices, LNG prices, exchange rates, composite indexes of representative global stock markets, etc. are collected and used for the semi-supervised learning which predicts the up-down movement of the price. Whereas various climatic indexes such as temperature, rainfall, sunlight, air pressure, etc, are used for the artificial neural network which predicts the real-values of the price. The resulting values are hybridized in the proposed model. The excellency of the model was empirically verified with the monthly data of electricity price provided by the Korea Energy Economics Institute.

PM10 농도변화에 따른 미세먼지 테마주 주가변동 빅데이터 분석 (Bigdata Analysis of Fine Dust Theme Stock Price Volatility According to PM10 Concentration Change)

  • 김무정;임규건
    • 서비스연구
    • /
    • 제10권1호
    • /
    • pp.55-67
    • /
    • 2020
  • 미세먼지 문제는 최근 우리나라 국민의 최대 관심사로 부상되었고 정부 및 지방자치단체에서도 상당한 노력을 기울이고 있다. 그간 미세먼지와 관련하여 다수의 학술적 연구가 진행되어왔지만 경제 분야의 연구는 상대적으로 미흡하였다. 본 연구에서는 미세먼지가 개별 주식에 어떠한 영향을 끼치는지에 대하여 빅데이터 분석을 통해 알아보고자 한다. 2013년부터 2017년까지 총 5개년을 대상으로 PM10농도 미세먼지 데이터와 미세먼지 테마주 데이터와의 관계를 분석하였다. 연구방법으로는 일반화최소제곱법을 사용한 선형회귀모형을 사용하여 회귀분석을 실시하였다. 연구 결과 미세먼지 농도가 전일에 비해서 증가했을 때 미세먼지 테마주의 주가가 상승하는 것으로 나타났다. 그리고, 2013년부터 2017년까지 주가변동 분석결과 회귀계수 값이 큰 기업은 매년 달라졌다. 5개년 동안 제일 큰 반응을 보인 기업은 오공, 웰크론, 동성제약, 삼일제약, 모나리자 순이었다. 그 중 연도별로 반복적으로 등장하는 기업으로는 모나리자가 2014년, 2015년, 2017년에, 삼일제약은 2015년, 2016년, 2017년에, 웰크론은 2016년, 2017년에 반복적으로 회귀계수가 크게 나타났으며 해당 기업은 미세먼지 농도에 주가가 민감하게 반응하는 기업이라고 사료된다. 향후 PM2.5 측정 데이터가 충분히 쌓이게 된다면 PM2.5의 농도를 독립변수로 한 연구와 비교·분석하는 것도 의미가 있을 것이다. 본 연구에서는 미세먼지 농도만을 독립변수로 하였는데 설명력을 높일 수 있는 변수를 추가한다면 좀 더 의미있는 연구결과를 기대할 수 있을 것이다.

Inter-Level Causal Reasoning in Stock Price Index Prediction Model

  • Kim, Myoung-Jong;Ingoo Han
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1998년도 추계학술대회 논문집
    • /
    • pp.224-227
    • /
    • 1998
  • This paper proposes inter-level causal reasoning to implement synergistic approach. We decompose KOSPI prediction model into economy and industry level. Two kinds of intra-level QCOM are combined in inter-level QCOM via Inter-level relations. Downward reasoning is achieved by propagating the disturbance in the higher level to lower level while upward reasoning is to analyze the reverse cases.

  • PDF

증권신고서의 TF-IDF 텍스트 분석과 기계학습을 이용한 공모주의 상장 이후 주가 등락 예측 (The prediction of the stock price movement after IPO using machine learning and text analysis based on TF-IDF)

  • 양수연;이채록;원종관;홍태호
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.237-262
    • /
    • 2022
  • 본 연구는 개인투자자들의 투자의사결정에 도움을 주고자, 증권신고서의 TF-IDF 텍스트 분석과 기계학습을 이용해 공모주의 상장 5거래일 이후 주식 가격 등락을 예측하는 모델을 제시한다. 연구 표본은 2009년 6월부터 2020년 12월 사이에 신규 상장된 691개의 국내 IPO 종목이다. 기업, 공모, 시장과 관련된 다양한 재무적 및 비재무적 IPO 관련 변수와 증권신고서의 어조를 분석하여 예측했고, 증권신고서의 어조 분석을 위해서 TF-IDF (Term Frequency - Inverse Document Frequency)에 기반한 텍스트 분석을 이용해 신고서의 투자위험요소란의 텍스트를 긍정적 어조, 중립적 어조, 부정적 어조로 분류하였다. 가격 등락 예측에는 로지스틱 회귀분석(Logistic Regression), 랜덤 포레스트(Random Forest), 서포트벡터머신(Support Vector Machine), 인공신경망(Artificial Neural Network) 기법을 사용하였고, 예측 결과 IPO 관련 변수와 증권신고서 어조 변수를 함께 사용한 모델이 IPO 관련 변수만을 사용한 모델보다 높은 예측 정확도를 보였다. 랜덤 포레스트 모형은 1.45%p 높아진 예측 정확도를 보였으며, 인공신공망 모형과 서포트벡터머신 모형은 각각 4.34%p, 5.07%p 향상을 보였다. 추가적으로 모형간 차이를 맥니마 검정을 통해 통계적으로 검증한 결과, 어조 변수의 유무에 따른 예측 모형의 성과 차이가 유의확률 1% 수준에서 유의했다. 이를 통해, 증권신고서에 표현된 어조가 공모주의 가격 등락 예측에 영향을 미치는 요인이라는 것을 확인할 수 있었다.

디지털 경제에 부동산 가격의 변동에 영향을 주는 요인에 관한 연구 (Study on the factors that affect the fluctuations in the price of real estate for a digital economy)

  • 최정일;이옥동
    • 디지털융복합연구
    • /
    • 제11권11호
    • /
    • pp.59-70
    • /
    • 2013
  • 디지털 경제를 맞이하여 대부분 자산을 부동산에 투자하고 있어 향후 부동산 가격에 많은 관심을 보이고 있다. 다양한 변수들이 주택 등 부동산 시장에 영향을 미치고 있다. 그 중 대표적으로 세대주와 생산가능인구, 금리, 주가지수 등 4가지 변수들을 선정하여 어느 변수가 서울아파트 가격에 얼마나 통계적으로 유의하게 영향을 미치는지 살펴보았다. 본 연구는 실증적으로 서울아파트가격의 결정모형을 구축하는데 목적이 있다. 분석결과 주가지수만 서울아파트와 통계적으로 유의한 것으로 분석되었다. 세대주나 생산가능인구는 기존의 연구처럼 서울아파트와 방향성은 동일하지만 통계적으로 유의하지 않은 것으로 분석되었다. 독립변수 중에서 서울아파트 가격의 결정요인으로 주가지수만 주요 변수로 선정되었다. 본 연구결과 향후 주택 등 부동산시장의 예측하기 위해서는 주식시장의 전망이 선행되어야 할 것이다.

거시경제요인이 스포테인먼트 산업에 미치는 영향 - NIKE, Adidas 기업 주가를 중심으로 - (The Influence of Macroeconomics Variables on Sportainment Industry - Case Study Using the Stock Price Changes of Nike, Adidas -)

  • 김헌일
    • 한국엔터테인먼트산업학회논문지
    • /
    • 제15권5호
    • /
    • pp.99-113
    • /
    • 2021
  • 본 연구는 거시경제요인이 스포테인먼트 산업에 미치는 영향을 확인하여 그 활용 가치를 발견하기 위한 연구다. 연구를 위해 거시경제요인으로 DJIA, WTI, GP를 선택하였고, 스포테인먼트 산업을 대표할 만한 자료로 NIKE와 Adidas 주가를 선택하였으며, 20년 5,285일간의 거래 자료를 2단계 추출 과정을 거쳐 분석하였다. 분석 결과 첫째, 거시경제요인은 스포테인먼트 산업에 유의한 영향을 미치는 것으로 나타났다. 둘째 시간의 설정, 각 시기의 특성, 그리고 요인 간 관계에 따라 각기 다른 수준의 회귀식이 나타났다. 마지막으로, 시계열분석을 통한 미래 예측 방법인 Durbin-Watson 검증 결과 특정 시기의 특정 요인 간 회귀식은 미래 예측에 활용 가능한 것으로 나타났지만, 각 조건에 따라 각각 다른 결과가 관찰되어 향후 후속 연구가 필요하다 판단된다.

합성곱 신경망을 이용한 주가방향 예측: 상관관계 속성선택 방법을 중심으로 (Stock Price Direction Prediction Using Convolutional Neural Network: Emphasis on Correlation Feature Selection)

  • 어균선;이건창
    • 경영정보학연구
    • /
    • 제22권4호
    • /
    • pp.21-39
    • /
    • 2020
  • 딥러닝(Deep learning) 기법은 패턴분석, 이미지분류 등 다양한 분야에서 높은 성과를 나타내고 있다. 특히, 주식시장 분석문제는 머신러닝 연구분야에서도 어려운 분야이므로 딥러닝이 많이 활용되는 영역이다. 본 연구에서는 패턴분석과 분류능력이 높은 딥러닝의 일종인 합성곱신경망(Convolutional Neural Network) 모델을 활용하여 주가방향 예측방법을 제안한다. 추가적으로 합성곱신경망 모델을 효율적으로 학습시키기 위한 속성선택(Feature Selection, FS)방법이 적용된다. 합성곱신경망 모델의 성과는 머신러닝 단일 분류기와 앙상블 분류기를 벤치마킹하여 객관적으로 검증된다. 본 연구에서 벤치마킹한 분류기는 로지스틱 회귀분석(Logistic Regression), 의사결정나무(Decision Tree), 인공신경망(Neural Network), 서포트 벡터머신(Support Vector Machine), 아다부스트(Adaboost), 배깅(Bagging), 랜덤포레스트(Random Forest)이다. 실증분석 결과, 속성선택을 적용한 합성곱신경망이 다른 벤치마킹 분류기보다 분류 성능이 상대적으로 높게 나타났다. 이러한 결과는 합성곱신경망 모델과 속성선택방법을 적용한 예측방법이 기업의 재무자료에 내포된 가치를 보다 정교하게 분석할 수 있는 가능성이 있음을 실증적으로 확인할 수 있었다.

LSTM 모델을 이용한 조각투자 상품의 가격 예측: 뮤직카우를 중심으로 (Price Prediction of Fractional Investment Products Using LSTM Algorithm: Focusing on Musicow)

  • 정현조;이재환;서지혜
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.81-94
    • /
    • 2022
  • 최근 고액의 실물자산이나 채권을 분할하여 여러 투자자가 공동으로 투자하는 이른바 조각투자가 인기를 얻고 있다. 2016년 설립된 뮤직카우는 음원 유통에 따른 저작권료 참여 청구권을 조각투자할 수 있는 서비스를 세계 최초로 시작하였다. 본 연구에서는 딥러닝 알고리즘 중 하나인 LSTM 모델을 사용하여 뮤직카우에서 거래되는 저작권료 참여 청구권의 가격을 예측하는 연구를 진행하였다. 청구권의 이전 가격과 거래량, 저작권료와 같은 청구권과 관련된 변수 외에도, 음악저작권료 참여 청구권 시장 상황을 나타내는 종합 지표와 경제 상황을 반영하는 환율, 국고채 금리, 한국종합주가지수도 변수로 사용하였다. 연구 결과 상대적으로 거래량이 낮은 조각투자의 사례에서도 LSTM 모델이 거래가격을 잘 예측하는 것을 확인할 수 있었다.

R-Trader: 강화 학습에 기반한 자동 주식 거래 시스템 (R-Trader: An Automatic Stock Trading System based on Reinforcement learning)

  • 이재원;김성동;이종우;채진석
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권11호
    • /
    • pp.785-794
    • /
    • 2002
  • 자동 주식 거래 시스템은 시장 추세의 예측, 투자 종목의 선정, 거래 전략 등 매우 다양한 최적화 문제를 통합적으로 해결할 수 있어야 한다. 그러나 기존의 감독 학습 기법에 기반한 거래 시스템들은 이러한 최적화 요소들의 효과적인 결합에는 큰 비중을 두지 않았으며, 이로 인해 시스템의 궁극적인 성능에 한계를 보인다. 이 논문은 주가의 변동 과정이 마르코프 의사결정 프로세스(MDP: Markov Decision Process)라는 가정 하에, 강화 학습에 기반한 자동 주식 거래 시스템인 R-Trader를 제안한다. 강화 학습은 예측과 거래 전략의 통합적 학습에 적합한 학습 방법이다. R-Trader는 널리 알려진 두 가지 강화 학습 알고리즘인 TB(Temporal-difference)와 Q 알고리즘을 사용하여 종목 선정과 기타 거래 인자의 최적화를 수행한다. 또한 기술 분석에 기반하여 시스템의 입력 속성을 설계하며, 가치도 함수의 근사를 위해 인공 신경망을 사용한다. 한국 주식 시장의 데이타를 사용한 실험을 통해 제안된 시스템이 시장 평균을 초과하는 수익을 달성할 수 있고, 수익률과 위험 관리의 두 가지 측면 모두에서 감독 학습에 기반한 거래 시스템에 비해 우수한 성능 보임을 확인한다.

은닉 마르코프 모델을 이용한 국가별 주가지수 예측 (A hidden Markov model for predicting global stock market index)

  • 강하진;황범석
    • 응용통계연구
    • /
    • 제34권3호
    • /
    • pp.461-475
    • /
    • 2021
  • 은닉 마르코프 모델(hidden Markov model, HMM)은 은닉된 상태와 관찰 가능한 결과의 두 가지 요소로 이루어진 통계적 모형으로 확률론적 접근이 가능하고, 다양한 수학적인 구조를 가지고 있어 여러 분야에서 활발하게 사용되고 있다. 특히 금융 분야의 시계열 데이터에 응용되어 다양한 연구가 진행되고 있다. 본 연구는 HMM 이론을 국내 KOSPI200 주가지수와 더불어 NIKKEI225, HSI, S&P500, FTSE100과 같은 해외 주가지수 예측에 적용해 보고자 한다. 또한, 최근 인공지능 분야의 발전으로 인해 주식 가격 예측에 빈번하게 사용되는 서포트 벡터 회귀(support vector regression, SVR) 결과와 어떤 차이가 있는지 비교하여 살펴보고자 한다.