• 제목/요약/키워드: Stock price prediction

검색결과 154건 처리시간 0.027초

A Prediction of Stock Price Movements Using Support Vector Machines in Indonesia

  • ARDYANTA, Ervandio Irzky;SARI, Hasrini
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권8호
    • /
    • pp.399-407
    • /
    • 2021
  • Stock movement is difficult to predict because it has dynamic characteristics and is influenced by many factors. Even so, there are some approaches to predict stock price movements, namely technical analysis, fundamental analysis, and sentiment analysis. Many researches have tried to predict stock price movement by utilizing these analysis techniques. However, the results obtained are varied and inconsistent depending on the variables and object used. This is because stock price movement is influenced by a variety of factors, and it is likely that those studies did not cover all of them. One of which is that no research considers the use of fundamental analysis in terms of currency exchange rates and the use of foreign stock price index movement related to the technical analysis. This research aims to predict stock price movements in Indonesia based on sentiment analysis, technical analysis, and fundamental analysis using Support Vector Machine. The result obtained has a prediction accuracy rate of 65,33% on an average. The inclusion of currency exchange rate and foreign stock price index movement as a predictor in this research which can increase average prediction accuracy rate by 11.78% compared to the prediction without using these two variables which only results in average prediction accuracy rate of 53.55%.

A Novel Parameter Initialization Technique for the Stock Price Movement Prediction Model

  • Nguyen-Thi, Thu;Yoon, Seokhoon
    • International journal of advanced smart convergence
    • /
    • 제8권2호
    • /
    • pp.132-139
    • /
    • 2019
  • We address the problem about forecasting the direction of stock price movement in the Korea market. Recently, the deep neural network is popularly applied in this area of research. In deep neural network systems, proper parameter initialization reduces training time and improves the performance of the model. Therefore, in our study, we propose a novel parameter initialization technique and apply this technique for the stock price movement prediction model. Specifically, we design a framework which consists of two models: a base model and a main prediction model. The base model constructed with LSTM is trained by using the large data which is generated by a large amount of the stock data to achieve optimal parameters. The main prediction model with the same architecture as the base model uses the optimal parameter initialization. Thus, the main prediction model is trained by only using the data of the given stock. Moreover, the stock price movements can be affected by other related information in the stock market. For this reason, we conducted our research with two types of inputs. The first type is the stock features, and the second type is a combination of the stock features and the Korea Composite Stock Price Index (KOSPI) features. Empirical results conducted on the top five stocks in the KOSPI list in terms of market capitalization indicate that our approaches achieve better predictive accuracy and F1-score comparing to other baseline models.

뉴스 감성 앙상블 학습을 통한 주가 예측기의 성능 향상 (An Accurate Stock Price Forecasting with Ensemble Learning Based on Sentiment of News)

  • 김하은;박영욱;유시은;정성우;유준혁
    • 대한임베디드공학회논문지
    • /
    • 제17권1호
    • /
    • pp.51-58
    • /
    • 2022
  • Various studies have been conducted from the past to the present because stock price forecasts provide stability in the national economy and huge profits to investors. Recently, there have been many studies that suggest stock price prediction models using various input data such as macroeconomic indicators and emotional analysis. However, since each study was conducted individually, it is difficult to objectively compare each method, and studies on their impact on stock price prediction are still insufficient. In this paper, the effect of input data currently mainly used on the stock price is evaluated through the predicted value of the deep learning model and the error rate of the actual stock price. In addition, unlike most papers in emotional analysis, emotional analysis using the news body was conducted, and a method of supplementing the results of each emotional analysis is proposed through three emotional analysis models. Through experiments predicting Microsoft's revised closing price, the results of emotional analysis were found to be the most important factor in stock price prediction. Especially, when all of input data is used, error rate of ensembled sentiment analysis model is reduced by 58% compared to the baseline.

인터넷 뉴스 빅데이터를 활용한 기업 주가지수 예측 (A Prediction of Stock Price Through the Big-data Analysis)

  • 유지돈;이익선
    • 산업경영시스템학회지
    • /
    • 제41권3호
    • /
    • pp.154-161
    • /
    • 2018
  • This study conducted to predict the stock market prices based on the assumption that internet news articles might have an impact and effect on the rise and fall of stock market prices. The internet news articles were tested to evaluate the accuracy by comparing predicted values of the actual stock index and the forecasting models of the companies. This paper collected stock news from the internet, and analyzed and identified the relationship with the stock price index. Since the internet news contents consist mainly of unstructured texts, this study used text mining technique and multiple regression analysis technique to analyze news articles. A company H as a representative automobile manufacturing company was selected, and prediction models for the stock price index of company H was presented. Thus two prediction models for forecasting the upturn and decline of H stock index is derived and presented. Among the two prediction models, the error value of the prediction model (1) is low, and so the prediction performance of the model (1) is relatively better than that of the prediction model (2). As the further research, if the contents of this study are supplemented by real artificial intelligent investment decision system and applied to real investment, more practical research results will be able to be developed.

HTM 기반의 주식가격 연속 예측 시스템 개발 (Development of a Continuous Prediction System of Stock Price Based on HTM Network)

  • 서대호;배선갑;김성진;강현석;배종민
    • 한국멀티미디어학회논문지
    • /
    • 제14권9호
    • /
    • pp.1152-1164
    • /
    • 2011
  • 주식 가격은 연속적으로 변화하는 스트림 데이터이다. 이러한 데이터의 특성상 시간의 흐름에 따라 주식 가격의 동향이 달라질 수 있기 때문에 주식 가격 동향의 예측은 가격이 갱신될 때 마다 연속적으로 이루어져야 한다. 본 논문은 HTM 모델을 이용하여 원하는 종목의 주식 가격 동향을 설정된 구간 간격에 따라 연속적으로 주식 가격 동향을 예측하는 새로운 방법을 제안한다. 이를 위해 먼저 정규화 과정을 거친 후 그 결과를 스트림 센서로 전달하는 선처리기와 연속적인 입력 데이터를 효과적으로 처리할 수 있는 스트림 센서를 제시한다. 또한, 각 레벨별 예측 결과를 저장하여 상위 단계로 전달하는 선 예측 저장 노드를 고안하고 이를 이용하여 주식 가격 동향을 예측하는 HTM 네트워크를 제시한다. 그리고 본 시스템을 실제 주식 가격으로 실험하여 그 성능을 제시한다.

시계열 네트워크에 기반한 주가예측 (Stock Price Prediction Based on Time Series Network)

  • 박강희;신현정
    • 경영과학
    • /
    • 제28권1호
    • /
    • pp.53-60
    • /
    • 2011
  • Time series analysis methods have been traditionally used in stock price prediction. However, most of the existing methods represent some methodological limitations in reflecting influence from external factors that affect the fluctuation of stock prices, such as oil prices, exchange rates, money interest rates, and the stock price indexes of other countries. To overcome the limitations, we propose a network based method incorporating the relations between the individual company stock prices and the external factors by using a graph-based semi-supervised learning algorithm. For verifying the significance of the proposed method, it was applied to the prediction problems of company stock prices listed in the KOSPI from January 2007 to August 2008.

서열 정렬 알고리즘을 이용한 주가 패턴 탐색 시스템 개발 (Developing Stock Pattern Searching System using Sequence Alignment Algorithm)

  • 김형준;조환규
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제37권6호
    • /
    • pp.354-367
    • /
    • 2010
  • 시계열 데이터에서 패턴을 분석하는 기법은 많은 발전이 이루어져 오고 있다. 그러나 주식시장의 경우 시계열 데이터임에도 불구하고 패턴 분석 및 예측은 많은 연구가 이루어지지 않고 있으며 예측도가 매우 낮다. 그 이유는 주가의 등락 자체가 본질적으로 무작위하다고 하면 어떠한 과학적 방법으로도 그 예측은 불가능하다. 본 연구에서는 주가의 등락이 보여주는 무작위성의 정도를 Kolmogorov 복잡도를 이용해 측정하여 그 무작위의 정도와 본 논문에서 제시한 반 전역정렬(semi-global alignment)로 예측할 수 있는 주가의 예측의 정확간의 깊은 상관관계가 있음을 보인다. 이를 위해서 주가지수의 등락을 양자화된 문자열로 변환하고 그 문자열의 Kolmogorov 복잡도를 이용해 주가 변동의 무작위성을 측정하였다. 우리는 KOSPI 주식 데이터 28년 690개의 데이터를 수집하여 이를 실험용 데이터로 사용하여 본 논문에서 제시한 방법의 의미를 평가하였다. 그 결과 Kolmogorov 복잡도가 높은 경우에는 변동 예측이 어려우며, Kolmogorov 복잡도가 낮은 경우에는 주식 변동 예측은 가능하나 3종류의 예측율에 대해서 투자자들이 관심이 많은 등락 예측율은 단기 예측은 12% 이상의 예측율을 보일 수 없으며, 장기 예측의 경우 54%의 예측율로 수렴함을 확인하였다.

양방향 LSTM 순환신경망 기반 주가예측모델 (Stock Prediction Model based on Bidirectional LSTM Recurrent Neural Network)

  • 주일택;최승호
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권2호
    • /
    • pp.204-208
    • /
    • 2018
  • 본 논문에서는 시계열 데이터인 주가의 변동 패턴을 학습하고, 주가 가격을 예측하기 적합한 주가 예측 딥러닝 모델을 제시하고 평가하였다. 일반신경망에 시계열 개념이 추가되어 은닉계층에 이전 정보를 기억시킬 수 있는 순환신경망이 시계열 데이터인 주가 예측 모델로 적합하다. 순환신경망에서 나타나는 기울기 소멸문제를 해결하며, 장기의존성을 유지하기 위하여, 순환신경망의 내부에 작은 메모리를 가진 LSTM을 사용한다. 또한, 순환신경망의 시계열 데이터의 직전 패턴 기반으로만 학습하는 경향을 보이는 한계를 해결하기 위하여, 데이터의 흐름의 역방향에 은닉계층이 추가되는 양방향 LSTM 순환신경망을 이용하여 주가예측 모델을 구현하였다. 실험에서는 제시된 주가 예측 모델에 텐서플로우를 이용하여 주가와 거래량을 입력 값으로 학습을 하였다. 주가예측의 성능을 평가하기 위해서, 실제 주가와 예측된 주가 간의 평균 제곱근 오차를 구하였다. 실험결과로는 단방향 LSTM 순환신경망보다, 양방향 LSTM 순환신경망을 이용한 주가예측 모델이 더 작은 오차가 발생하여 주가 예측 정확성이 향상되었다.

A Smoothing Method for Stock Price Prediction with Hidden Markov Models

  • Lee, Soon-Ho;Oh, Chang-Hyuck
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권4호
    • /
    • pp.945-953
    • /
    • 2007
  • In this paper, we propose a smoothing and thus noise-reducing method of data sequences for stock price prediction with hidden Markov models, HMMs. The suggested method just uses simple moving average. A proper average size is obtained from forecasting experiments with stock prices of bank sector of Korean Exchange. Forecasting method with HMM and moving average smoothing is compared with a conventional method.

  • PDF

포트폴리오 최적화와 주가예측을 이용한 투자 모형 (Stock Trading Model using Portfolio Optimization and Forecasting Stock Price Movement)

  • 박강희;신현정
    • 대한산업공학회지
    • /
    • 제39권6호
    • /
    • pp.535-545
    • /
    • 2013
  • The goal of stock investment is earning high rate or return with stability. To accomplish this goal, using a portfolio that distributes stocks with high rate of return with less variability and a stock price prediction model with high accuracy is required. In this paper, three methods are suggested to require these conditions. First of all, in portfolio re-balance part, Max-Return and Min-Risk (MRMR) model is suggested to earn the largest rate of return with stability. Secondly, Entering/Leaving Rule (E/L) is suggested to upgrade portfolio when particular stock's rate of return is low. Finally, to use outstanding stock price prediction model, a model based on Semi-Supervised Learning (SSL) which was suggested in last research was applied. The suggested methods were validated and applied on stocks which are listed in KOSPI200 from January 2007 to August 2008.