Proceedings of the Safety Management and Science Conference
/
2002.11a
/
pp.321-339
/
2002
The result of variance decomposition through yield of Treasury of 30 year maturity of USA, S&P 500 index, stock price of KEPCO has 76.12% of impulse of KEPCO stock price at short-term horizon, but they have 51.40% at long-term horizon. After one year, they occupy 13.65%, and 33.25%. So their effects are increased. By the way, S&P 500 index and yield of Treasury of 30 year maturity of USA have relatively more effect for forecast of stock price oi KEPCO at short-term & long-term. The yield of Treasury of 30 year maturity of USA more than S&P 500 index have more effect for stock price of KEPCO. It is why. That foreign investors through fall of stock price of USA invest for emerging market is less than movement for emerging market of hedge funds through effect of fall of yield of Treasury of 30 year maturity of USA, according to relative effects for stock price of Korea companies. The result of variance decomposition through won/dollar foreign exchange rate, yield of corporate bond of 3 year maturity, Korea Stock Price index(KOSPI), stock price of KEPCO has 81.33% of impulse of KEPCO stock price at short-term horizon, but they have 41.73% at long-term horizon. After one year, they occupy 23.57% and 34.70%. So their effects are increased. By the way, KOSPI and won/dollar foreign exchange rate have relatively more effect for forecast of stock price of KEPCO at short-term & long-term. The won/dollar foreign exchange rate more than KOSPI have more effect for stock price of KEPCO. It is why. The recovery of economic condition through improvement of company revenue causes of rising of KOSPI. But, if persistence of low interest rate continues, fall of won/dollar foreign exchange rate will be more aggravated. And it will give positive effect for stock price of KEPCO. This gives more positive effect at two main reason. Firstly, through fall of won/dollar foreign exchange rate and rising of credit rating of Korea will be followed. Therefore, foreign investors will invest more funds to Korea. Secondly, inflow of foreign investment funds through profit of won/dollar foreign exchange rate and stock investment will be occurred. If appreciation of won against dollar is forecasted, foreign investors will buy won. Through this won, investors will do investment. Won/dollar foreign exchange rate is affected through external factors of yen/dollar foreign exchange rate, etc. Therefore, the exclusion of instable factors for foreign investors through rising of credit rating of Korea is necessary things.
Since the stock price is a measure of the future value of the company, when analyzing the stock price, the company's growth potential, such as sales and profits, is considered and invested in stocks. In order to set the criteria for selecting stocks, institutional investors look at current industry trends and macroeconomic indicators, first select relevant fields that can grow, then select related companies, analyze them, set a target price, then buy, and sell when the target price is reached. Stock trading is carried out in the same way. However, general individual investors do not have any knowledge of investment, and invest in items recommended by experts or acquaintances without analysis of financial statements or growth potential of the company, which is lower in terms of return than institutional investors and foreign investors. Therefore, in this study, we propose a research method to select undervalued stocks by analyzing ROE, an indicator that considers the growth potential of a company, such as sales and profits, and predict the stock price flow of the selected stock through deep learning algorithms. This study is conducted to help with investment.
Time series analysis methods have been traditionally used in stock price prediction. However, most of the existing methods represent some methodological limitations in reflecting influence from external factors that affect the fluctuation of stock prices, such as oil prices, exchange rates, money interest rates, and the stock price indexes of other countries. To overcome the limitations, we propose a network based method incorporating the relations between the individual company stock prices and the external factors by using a graph-based semi-supervised learning algorithm. For verifying the significance of the proposed method, it was applied to the prediction problems of company stock prices listed in the KOSPI from January 2007 to August 2008.
There are many methods for analyzing patterns in time series data. Although stock data represents a time series, there are few studies on stock pattern analysis and prediction. Since people believe that stock price changes randomly we cannot predict stock prices using a scientific method. In this paper, we measured the degree of the randomness of stock prices using Kolmogorov complexity, and we showed that there is a strong correlation between the degree and the accuracy of stock price prediction using our semi-global alignment method. We transformed the stock price data to quantized string sequences. Then we measured randomness of stock prices using Kolmogorov complexity of the string sequences. We use KOSPI 690 stock data during 28 years for our experiments and to evaluate our methodology. When a high Kolmogorov complexity, the stock price cannot be predicted, when a low complexity, the stock price can be predicted, but the prediction ratio of stock price changes of interest to investors, is 12% prediction ratio for short-term predictions and a 54% prediction ratio for long-term predictions.
Korean Journal of Construction Engineering and Management
/
v.20
no.5
/
pp.3-11
/
2019
This study is designed to examine the stock price of construction firms which are affected by the deregulation of new apartment sales price. As empirical methodology, it uses the traditional event study analysis to test the influence of the deregulation of new apartment sales price and the regression analysis to test which variables are related. The results of this study are summarized as follows : First, the cumulative abnormal return of stock is positive when government announced the deregulation of new apartment sales price. The cumulative abnormal return of stock for 21 trading day before -10 to +10 day is 25.51% which is significant different from zero at 1 percent level. This result suggests that the deregulation of new apartment sales price conveys good information to stock market that the firms performance will be good in the future. Second, in the regression analysis this study shows that the cumulative abnormal return of stock is related to firm's profit margin ratio.
ZAINURI, Zainuri;VIPHINDRARTIN, Sebastiana;WILANTARI, Regina Niken
The Journal of Asian Finance, Economics and Business
/
v.8
no.3
/
pp.1113-1119
/
2021
This study aims to determine the impact of the news coverage of the COVID-19 pandemic on the composite stocks' movement (IHSG) in Indonesia. This study used secondary data of daily time series with an observation range of March 2020-June 2020. This study used three main variables, namely, COVID-19 news, the daily price of a composite stock market index (IHSG), and interest rate. This study clarifies pandemic news into two forms to facilitate quantitative analysis, namely, good news and bad news. Both pandemic news conditions, which have been clarified, are then processed into the index and reprocessed along with two other variables using vector autoregressive (VAR). The results showed that the good news have a dominant effect on developing the composite stock price index (IHSG) in Indonesia during the COVID-19 pandemic. Although the good news dominates the composite stock price index (IHSG) movement in Indonesia, the bad news must also be anticipated. By implementing a series of macroeconomic policies that follow the conditions of the composite stock price index (IHSG) movements on the stock exchange floor, the bad news response can decrease the potential for a decline in investor confidence, so that the financial system's macroeconomic stability is maintained.
Liu, Ximei;Latif, Zahid;Xiong, Daoqi;Saddozai, Sehrish Khan;Wara, Kaif Ul
Journal of Information Processing Systems
/
v.15
no.5
/
pp.1201-1210
/
2019
Stock price is characterized as being mutable, non-linear and stochastic. These key characteristics are known to have a direct influence on the stock markets globally. Given that the stock price data often contain both linear and non-linear patterns, no single model can be adequate in modelling and predicting time series data. The autoregressive integrated moving average (ARIMA) model cannot deal with non-linear relationships, however, it provides an accurate and effective way to process autocorrelation and non-stationary data in time series forecasting. On the other hand, the neural network provides an effective prediction of non-linear sequences. As a result, in this study, we used a hybrid ARIMA and neural network model to forecast the monthly closing price of the Shanghai composite index and Shenzhen component index.
Kim, Hyung-Ho;Sung, Ki-Deok;Jeon, Jun-woo;Yeo, Gi-Tae
Journal of Digital Convergence
/
v.14
no.6
/
pp.157-165
/
2016
The purpose of this study was to analyze the effect of the shipping industry real economy index on the stock prices of domestic shipping companies. The parameters used in this analysis were the stock price of H Company in South Korea and shipping industry real economy indices including BDI, CCFI and HRCI. The period analysis was from 2012 to 2015. The weekly data for four years of the stock price index of shipping companies, BDI, CCFI, and HRCI were used. The effects of CCFI and HRCI on the stock price index of domestic shipping companies were analyzed using the VAR model, and the effects of BDI on the stock price index of domestic shipping companies were analyzed using the VECM model. The VAR model analysis results showed that CCFI and HRCI had negative effects on the stock price index, and the VECM model analysis results showed that BDI also had a negative effect on the stock price index.
Purpose - This study deals with the manager's overconfidence and stock price delay, and verified whether the stock price delay phenomenon changes as the overconfidence increases. Design/methodology/approach - Manager overconfidence means that managers have over confidence in their positions or abilities, and was measured according to Schrand and Zechman (2012). Stock price delay is a phenomenon in which information of company is not immediately reflected in the stock price, but is reflected over time, and was measured by the method suggested in a study by Hou and Moskowitz (2005). The analysis subjects used in this study are companies listed on the KOSPI market between 2011 and 2019, and the final sample is 5,509 company-years. Findings - As a result of the verification, it was shown that the stock price delay decreased as the manager's overconfidence increased, and this effect was amplified as the foreign shareholder's share ratio increased and the number of follow-up financial analysts increased. This means that as the manager's overconfidence increases, he actively provides high-quality information to the capital market. In addition, as a result of subdividing the manager's overconfidence into the investment and capital raising aspects, the capital raising aspect has a significant effect on reducing stock delays. This can be interpreted as the fact that managers with overconfident tendencies have a greater incentive to satisfy investors' information needs. Research implications or Originality - In previous studies, the characteristics of managers with strong overconfidence have both positive and negative aspects. The results of this study are significant in that they clearly demonstrated the positive aspect through the market variable of stock price delay, and it is expected to help capital market stakeholders understand the characteristics of managers with a strong propensity for overconfidence.
As the global economy stagnated due to the Corona 19 virus from Wuhan, China, most countries, including the US Federal Reserve System, introduced policies to boost the economy by increasing the amount of money. Most of the stock investors tend to invest only by listening to the recommendations of famous YouTubers or acquaintances without analyzing the financial statements of the company, so there is a high possibility of the loss of stock investments. Therefore, in this research, I have used artificial intelligence deep learning techniques developed under the existing automatic trading conditions to analyze and predict macro-indicators that affect stock prices, giving weights on individual stock price predictions through correlations that affect stock prices. In addition, since stock prices react sensitively to real-time stock market news, a more accurate stock price prediction is made by reflecting the weight to the stock price predicted by artificial intelligence through stock market news text mining, providing stock investors with the basis for deciding to make a proper stock investment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.