본 연구에서는 주가 결정 방법이 주가 경향 예측에 미치는 영향을 확인하기 위한 분석을 수행한다. 주식시장에서 성공적인 투자를 위해서는 주가의 상승과 하락을 정확하게 예측하는 것이 큰 도움이 되므로 주가 경향 예측에 관해 많은 연구가 진행되고 있다. 예를 들어 근래에는 SNS나 뉴스의 내용을 텍스트 마이닝을 이용하여 분석하고, 이를 이용한 주가 등락의 예측 방법이 제안되었으며 다양한 기계학습 기법들이 활용되고 있다. 그러나 주가의 경향을 '상승' 또는 '하락'으로 결정하는 방법은 제대로 분석된 적 없으며 일반적으로 쓰던 방법을 답습하고 있다. 이에 본 논문에서는 주가 경향 결정 방법을 이동평균을 이용해 일반화하고 주가 경향 결정 방법이 예측 정확도에 미치는 영향을 분석한다. 분석 결과, 다음 날의 주가 경향을 예측하는 경우, 주가 경향 결정방법에 따라 예측 정확도가 47%까지 차이가 남을 발견하였다. 또한 경향 결정에 사용되는 기준값 윈도우의 크기와 예측의 정확도는 비례 관계이며, 대상값 윈도우의 크기와 정확도는 반비례 관례임을 알 수 있었다.
주식 투자는 재테크의 하나로 금리 인하와 비과세 제도의 축소에 따라 주목을 받기 시작했다. 그러나 투자에 전문적인 지식이 필요할 뿐 아니라 위험 부담이 크다는 단점이 있다. 따라서 주가 경향의 정확한 예측은 개인투자자에게나 주식 투자 관련 서비스를 제공하는 회사에 중요한 능력이며, 더욱 정확한 예측을 위한 연구가 활발히 진행 중이다. 그러나 예측 연구들의 공정한 비교와 최고의 예측 모델을 얻기 위한 하이퍼-파라미터의 최적화에는 예측 모델의 성능을 정확하게 평가하는 방법이 필요한데, 지금까지 예측 모델의 성능 평가에 대한 연구는 미진한 상태이며, 기존 방법들을 그대로 답습하고 있는 실정이다. 이에 본 논문에서는 주가 예측 모델 성능 평가를 측정기준과 데이터 구성의 관점에서 분석하고, 예측 불균형 비율을 이용한 주가 경향 예측 모델의 공정한 성능 평가 방법을 제안한다.
국내 주식 시장에서 트렌드 예측을 위한 기계학습 모델의 활용 사례가 점점 증가하고 있다. 특히, 주가 데이터와 같은 복잡한 시계열 데이터를 분석하고 예측하기 위해서는 기계학습을 활용하는 것이 필수적이다. 본 연구에서는 클라우드 컴퓨팅 서비스를 활용한 금융 데이터 수집 및 금융 시계열 추세 예측을 위한 기계학습 시스템을 제안한다. 먼저, 데이터 수집을 위해 Amazon Web Services(AWS)의 서버리스 서비스를 활용하였으며, 기술적 분석 지표(Relative Strength Index(RSI), Simple Moving Average(SMA), 볼린저 밴드, Rate Of Change(ROC), Golden Cross and Dead Cross(GDC), Stochastic Oscillator(STOCH), Moving Average Convergence Divergence(MACD), Detrended Price Oscillator(DPO))의 임계치를 유전 알고리즘을 통해 최적화 하였다. 이후 최적화된 지표들을 Echo State Network(ESN), Recurrent Neural Network(RNN), 그리고 다양한 기계학습 분류 모델의 학습 데이터로 사용하여 각 종목의 추세를 예측하였다. 예측된 추세를 바탕으로 백테스트를 진행한 결과, 평균 수익률은 ESN이 334%, RNN이 175%, 그리고 분류 모델이 199%를 기록하였다. 따라서 본 연구는 국내 주식 투자에서도 기계학습이 높은 예측력을 보이며 다양한 활용 가능성을 지니고 있음을 시사 하였다.
오래 전부터 학계에서는 정확한 주식 시장의 예측에 대한 많은 연구가 진행되어 왔고 현재에도 다양한 기법을 응용한 예측모형들이 연구되고 있다. 특히 최근에는 딥러닝(Deep-Learning)을 포함한 다양한 기계학습기법(Machine Learning Methods)을 이용해 주가지수를 예측하려는 많은 시도들이 진행되고 있다. 전통적인 주식투자거래의 분석기법으로는 기본적 분석과 기술적 분석방법이 사용되지만 보다 단기적인 거래예측이나 통계학적, 수리적 기법을 응용하기에는 기술적 분석 방법이 보다 유용한 측면이 있다. 이러한 기술적 지표들을 이용하여 진행된 대부분의 연구는 미래시장의 (보통은 다음 거래일) 주가 등락을 이진분류-상승 또는 하락-하여 주가를 예측하는 모형을 연구한 것이다. 하지만 이러한 이진분류로는 추세를 예측하여 매매시그널을 파악하거나, 포트폴리오 리밸런싱(Portfolio Rebalancing)의 신호로 삼기에는 적합치 않은 측면이 많은 것 또한 사실이다. 이에 본 연구에서는 기존의 주가지수 예측방법인 이진 분류 (binary classification) 방법에서 주가지수 추세를 (상승추세, 박스권, 하락추세) 다분류 (multiple classification) 체계로 확장하여 주가지수 추세를 예측하고자 한다. 이러한 다 분류 문제 해결을 위해 기존에 사용하던 통계적 방법인 다항로지스틱 회귀분석(Multinomial Logistic Regression Analysis, MLOGIT)이나 다중판별분석(Multiple Discriminant Analysis, MDA) 또는 인공신경망(Artificial Neural Networks, ANN)과 같은 기법보다는 예측성과의 우수성이 입증된 다분류 Support Vector Machines(Multiclass SVM, MSVM)을 사용하고, 이 모델의 성능을 향상시키기 위한 래퍼(wrapper)로서 유전자 알고리즘(Genetic Algorithm)을 이용한 최적화 모델을 제안한다. 특히 GA-MSVM으로 명명된 본 연구의 제안 모형에서는 MSVM의 커널함수 매개변수, 그리고 최적의 입력변수 선택(feature selection) 뿐만이 아니라 학습사례 선택(instance selection)까지 최적화하여 모델의 성능을 극대화 하도록 설계하였다. 제안 모형의 성능을 검증하기 위해 국내주식시장의 실제 데이터를 적용해본 결과 ANN이나 CBR, MLOGIT, MDA와 같은 기존 데이터마이닝 기법들이나 인공지능 알고리즘은 물론 현재까지 가장 우수한 예측 성과를 나타내는 것으로 알려져 있던 전통적인 다분류 SVM 보다도 제안 모형이 보다 우수한 예측성과를 보임을 확인할 수 있었다. 특히 주가지수 추세 예측에 있어서 학습사례의 선택이 매우 중요한 역할을 하는 것으로 확인 되었으며, 모델의 성능의 개선효과에 다른 요인보다 중요한 요소임을 확인할 수 있었다.
Recently in Korea, YouTube stock channels increased rapidly due to the high social interest in the stock market during the COVID-19 period. Accordingly, the role of new media channels such as YouTube is attracting attention in the process of generating and disseminating market information. Nevertheless, prior studies on the market forecasting power of YouTube stock channels remain insignificant. In this study, the market forecasting power of the information from the YouTube stock channel was examined and compared with traditional news media. To measure information from each YouTube stock channel and news media, positive and negative opinions were extracted. As a result of the analysis, opinion in channels operated by media outlets were found to be leading indicators of KOSPI market returns among YouTube stock channels. The prediction accuracy by using logistic regression model show 74%. On the other hand, Sampro TV, a popular YouTube stock channel, and the traditional news media simply reported the market situation of the day or instead showed a tendency to lag behind the market. This study is differentiated from previous studies in that it verified the market predictive power of the information provided by the YouTube stock channel, which has recently shown a growing trend in Korea. In the future, the results of advanced analysis can be confirmed by expanding the research results for individual stocks.
주가 예측은 경제, 통계, 컴퓨터 공학 등 여러 분야에서 연구되는 주제이며, 특히 최근에는 기본적 지표나 기술적 지표 등 다양한 지표로부터 인공지능 모델을 학습하여 주가의 변동을 예측하는 연구들이 활발해 지고 있다. 본 연구에서는 S&P500 등의 해외지수, 과거 KOSPI 지수, 그리고 KOSPI 투자자별 매매 동향으로부터 KOSPI의 등락을 예측하는 딥러닝 모델을 제안한다. 제안 모델은 주가 등락 예측을 위하여 비지도 학습 방법인 적층 오토인코더를 이용하여 잠재변수를 추출하고, 추출된 잠재변수로부터 시계열 데이터 학습에 적합한 LSTM 모델로 학습하여 당일 시가 대비 종가의 등락을 예측하며, 예측된 값을 기반으로 매수 또는 매도를 결정한다. 본 연구에서 제안하는 모델과 비교 모델들의 수익률 및 예측 정확도를 비교한 결과 제안 모델이 비교 모델들 보다 우수한 성능을 보였다.
최근 머신러닝 및 딥러닝 기법을 활용한 주식 가격 예측 연구가 다양하게 이루어지고 있다. 그 중에서도 최근에는 주식 매수 및 매도 주문 정보를 담고 있는 호가창을 이용하여 주가를 예측하려는 연구가 시도되고 있다. 하지만 호가창을 활용한 연구는 대부분 가장 최근 일정 기간 동안의 호가창 추이만을 고려하며, 호가창의 중기 추이와 단기 추이를 같이 고려하는 연구는 거의 진행되지 않았다. 이에 본 논문에서는 호가창의 중기와 단기 추이를 모두 고려하여 주가 등락을 보다 정확히 예측하는 딥러닝 기반 예측 모델을 제안한다. 더욱이 본 논문에서 제안하는 모델은 중단기 호가창 정보 외에도 해당 종목에 대한 동기간 뉴스 헤드라인까지 고려하여 기업의 정성적 상황까지 주가 예측에 반영한다. 본 논문에서 제안하는 딥러닝 기반 예측 모델은 호가창 변화의 특징을 합성곱 신경망으로 추출하고 뉴스 헤드라인의 특징을 Word2vec을 이용하여 추출한 뒤, 이들 정보를 결합하여 특정 기업 주식의 다음 날 등락 여부를 예측한다. 실제 NASDAQ 호가창 데이터와 뉴스 헤드라인 데이터를 사용하여 제안 모델로 5개 종목(Amazon, Apple, Facebook, Google, Tesla)의 일일 주가 등락을 예측한 결과, 제안 모델은 기존 모델에 비해 정확도를 최대 17.66%p, 평균 14.47%p 향상시켰다. 또한 해당 모델로 모의 투자를 수행한 결과, 21 영업일 동안 종목에 따라 최소 $492.46, 최대 $2,840.83의 수익을 얻었다.
자동 주식 거래 시스템은 시장 추세의 예측, 투자 종목의 선정, 거래 전략 등 매우 다양한 최적화 문제를 통합적으로 해결할 수 있어야 한다. 그러나 기존의 감독 학습 기법에 기반한 거래 시스템들은 이러한 최적화 요소들의 효과적인 결합에는 큰 비중을 두지 않았으며, 이로 인해 시스템의 궁극적인 성능에 한계를 보인다. 이 논문은 주가의 변동 과정이 마르코프 의사결정 프로세스(MDP: Markov Decision Process)라는 가정 하에, 강화 학습에 기반한 자동 주식 거래 시스템인 R-Trader를 제안한다. 강화 학습은 예측과 거래 전략의 통합적 학습에 적합한 학습 방법이다. R-Trader는 널리 알려진 두 가지 강화 학습 알고리즘인 TB(Temporal-difference)와 Q 알고리즘을 사용하여 종목 선정과 기타 거래 인자의 최적화를 수행한다. 또한 기술 분석에 기반하여 시스템의 입력 속성을 설계하며, 가치도 함수의 근사를 위해 인공 신경망을 사용한다. 한국 주식 시장의 데이타를 사용한 실험을 통해 제안된 시스템이 시장 평균을 초과하는 수익을 달성할 수 있고, 수익률과 위험 관리의 두 가지 측면 모두에서 감독 학습에 기반한 거래 시스템에 비해 우수한 성능 보임을 확인한다.
과거부터 주식시장의 주가 예측은 풀리지 않는 난제이다. 이를 과학적으로 예측하기 위해 다양한 시도 및 연구들이 있어왔지만 정확한 가격을 예측하는 것은 불가능하다. 최근 분산 원장이라는 개념을 기술적으로 구현한 최초의 암호화폐인 비트코인을 시작으로 다양한 종류의 암호화폐가 개발되면서 암호화폐 시장이 형성되었고, 그 가격을 예측하기 위해 다양한 접근들이 시도되고 있다. 특히, 기존의 전통적인 주식시장에서의 주가 예측 기법들을 적용하려는 시도부터 딥러닝과 강화학습을 적용하려는 시도까지 다양하다. 하지만 암호화폐 시장은 기존 주식 시장에는 없던 여러 가지 새로운 특징을 가지는 시장으로서 전통적인 주식 시장 분석 기술뿐만 아니라 암호화폐 시장에 적합한 새로운 분석 기술에 관한 수요가 증가하고 있는 상황이다. 본 연구에서는 우선 빗썸의 API를 통하여 7개의 암호화폐 가격 데이터를 수집 및 가공하였다. 이후, Data-Driven 방식의 지도학습 기반 기계학습 모델인 그래디언트 부스팅 모델을 채택하여 암호화폐 가격 데이터 변화를 학습하고, 검증단계에서 가장 최적의 모델 파라미터를 산출하고, 최종적으로 테스트 데이터를 활용하여 암호화폐 가격동향 예측 성능을 평가한다.
주식투자의 대중화, 관심의 증가에 따라 주가예측의 중요성이 증대되고 있다. 주가의 변화는 어떤 경향이나 패턴에 의해 움직인다고 가정할 때, 과거의 주가분석을 통해 이들의 변화를 잘 설명할 수 있는 모델의 구성이 가능할 것이다. 동적인 현상을 반영하는 최적의 모델이 구성된다면 이를 통해 향후의 일정기간의 주가의 운동양태의 예측이 가능할 것이다. 본 연구에서는 주가와 같은 템포랄(temporal) 데이터를 잘 설명할 수 있는 모델결정에 대한 방법론으로서 오토마타 기반의 모델을 가정한다. 모델의 최적 상태 수를 결정하기 위한 기준으로서 베이지안정보기준(BIC : Bayesian Information Criterion) 근사법을 사용한다. 베이지안정보기준의 유효성을 살펴보고 베이지안정보기준을 실제 주가데이터 모델의 상태 수 결정과정에 적용하여 모델을 생성한 후 결정된 모델을 통하여 일정 기간의 일별주가곡선의 운동양태를 예측한다. 실제의 주가곡선에 적용하여 모델의 유효성을 확인하였고 예측 주가곡선의 운동양태가 실제 주가 곡선과 유사함을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.