• 제목/요약/키워드: Stock Price Forecasting

검색결과 88건 처리시간 0.027초

신경 회로망과 통계적 기법을 이용한 종합주가지수 예측 모형의 개발 (Development of the KOSPI (Korea Composite Stock Price Index) forecast model using neural network and statistical methods))

  • 이은진;민철홍;김태선
    • 전자공학회논문지CI
    • /
    • 제45권5호
    • /
    • pp.95-101
    • /
    • 2008
  • 주가지수는 경제 및 정치적 상황을 포함한 다양한 주변 환경에 영향을 받는 관계로 정확한 주가지수 예측모형의 개발은 매우 어려운 문제로 여겨지고 있다. 본 논문에서는, 신경회로망과 통계적인 방법을 이용하여 종합주가지수(KOSPI)를 예측하는 에이전트 시스템 기법을 제안한다. 예측오차의 평균 및 편차를 최소화하기 위해서, 에이전트시스템은 특징추출, 변수선정, 예측 엔진선정 및 분석을 위한 부(sub)에이전트 모듈들을 포함하고 있다. KOSPI(Korea Composite Stock Price Index) 예측을 위한 에이전트시스템 구현의 첫 번째 단계로서, 주성분분석을 이용하여 22개의 표준기본경제지표에서 12개의 경제지표를 추출하였다. 열두 개의 추출된 경제지표들은 예측하고자하는 예측일에 따라 최량부분적합법을 이용하여 다시 한 번 입력 변수들을 선정하게 된다. 성능평가를 위해 주가지수의 변동폭이 다른 두 종류의 실험데이터를 대상으로 예측을 진행한 결과 30일의 연속적인 종합주가지수예측에 있어 11.92포인트의 평균오차율을 보였다. 또한, 예측시점에 따라 관련이 높은 기본지표의 종류 및 개수가 다르게 나타나므로 제안한 주가예측 에이전트시스템 구조가 유용함을 보였다.

Prophet 알고리즘을 활용한 가상화폐의 자동 매매 프로그램 개발 (Cryptocurrency Auto-trading Program Development Using Prophet Algorithm)

  • 김현선;안재준
    • 산업경영시스템학회지
    • /
    • 제46권1호
    • /
    • pp.105-111
    • /
    • 2023
  • Recently, research on prediction algorithms using deep learning has been actively conducted. In addition, algorithmic trading (auto-trading) based on predictive power of artificial intelligence is also becoming one of the main investment methods in stock trading field, building its own history. Since the possibility of human error is blocked at source and traded mechanically according to the conditions, it is likely to be more profitable than humans in the long run. In particular, for the virtual currency market at least for now, unlike stocks, it is not possible to evaluate the intrinsic value of each cryptocurrencies. So it is far effective to approach them with technical analysis and cryptocurrency market might be the field that the performance of algorithmic trading can be maximized. Currently, the most commonly used artificial intelligence method for financial time series data analysis and forecasting is Long short-term memory(LSTM). However, even t4he LSTM also has deficiencies which constrain its widespread use. Therefore, many improvements are needed in the design of forecasting and investment algorithms in order to increase its utilization in actual investment situations. Meanwhile, Prophet, an artificial intelligence algorithm developed by Facebook (META) in 2017, is used to predict stock and cryptocurrency prices with high prediction accuracy. In particular, it is evaluated that Prophet predicts the price of virtual currencies better than that of stocks. In this study, we aim to show Prophet's virtual currency price prediction accuracy is higher than existing deep learning-based time series prediction method. In addition, we execute mock investment with Prophet predicted value. Evaluating the final value at the end of the investment, most of tested coins exceeded the initial investment recording a positive profit. In future research, we continue to test other coins to determine whether there is a significant difference in the predictive power by coin and therefore can establish investment strategies.

국면전환 GARCH 모형을 이용한 코스피 변동성 분석 (Volatility Forecasting of Korea Composite Stock Price Index with MRS-GARCH Model)

  • 허진영;성병찬
    • 응용통계연구
    • /
    • 제28권3호
    • /
    • pp.429-442
    • /
    • 2015
  • 변동성(volatility)은 투자위험을 의미하며 자산의 가격결정이나 포트폴리오 관리 및 투자전략에서 아주 중요한 역할을 한다. 이러한 변동성을 모형화하기 위한 조건부 이분산 모형으로서 전통적인 GARCH(generalized autoregressive conditional heteroskedastic) 모형 및 확장된 형태들이 널리 사용되어지고 있으나, 금융위기와 재정위기와 같은 구조적 변화를 변동성 예측에 반영할 수 없다는 단점을 가지고 있다. 본 논문에서는 이를 극복하기 위한 모형으로서 국면전환 GARCH(Markov regime switching GARCH) 모형을 소개하고, 한국의 일별 KOSPI 수익률에 적용하여 변동성 분석 및 예측을 실시하고, 기존의 GARCH 모형들과 비교하여 그 성능을 평가한다. 그 결과 표본 내(in-sample)의 변동성 적합도 측면에서 국면전환 GARCH 모형이 가장 우수한 성능을 보였으며, 표본 외(out-of-sample) 예측력 측면에서는 국면전환 GARCH 모형이 단기적 예측에서 좋지 않은 성능을 보였으나 장기적 예측에서 우수함을 보였다.

시스템다이내믹스기법을 이용한 우리나라 양식넙치시장의 수급구조 분석 (Analyzing the Supply and Demand Structure of the Korean Flatfish Aquaculture Market : A System Dynamics Approach)

  • 박병인
    • 수산경영론집
    • /
    • 제39권1호
    • /
    • pp.17-42
    • /
    • 2008
  • This study tried to build a structure model for the Korean flatfish aquaculture market by a system dynamics approach. A pool of several factors to influence the market structure was built. In addition, several reasonable factors related to the flatfish aquaculture market were selected to construct the causal loop diagram (CLD). Then the related stock/flow diagrams of the causal loop diagrams were constructed. This study had been forecasting a production price and supply, demand, and consumption volume for the flatfish market by a monthly basis, and then made some validation to the forecasting. Finally, four governmental policies such as import, storage, reduction of input, and demand control were tentatively evaluated by the created model. As a result, the facts that the demand control policy is most effective, and import and storage policies are moderately effective were found.

  • PDF

Application of Support Vector Machines to the Prediction of KOSPI

  • Kim, Kyoung-jae
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2003년도 춘계학술대회
    • /
    • pp.329-337
    • /
    • 2003
  • Stock market prediction is regarded as a challenging task of financial time-series prediction. There have been many studies using artificial neural networks in this area. Recently, support vector machines (SVMs) are regarded as promising methods for the prediction of financial time-series because they me a risk function consisting the empirical ewer and a regularized term which is derived from the structural risk minimization principle. In this study, I apply SVM to predicting the Korea Composite Stock Price Index (KOSPI). In addition, this study examines the feasibility of applying SVM in financial forecasting by comparing it with back-propagation neural networks and case-based reasoning. The experimental results show that SVM provides a promising alternative to stock market prediction.

  • PDF

서울시 아파트 가격 행태 예측 모델에 관한 연구 (A Study on Forecasting Model of the Apartment Price Behavior in Seoul)

  • 권희철;유정상
    • 디지털융복합연구
    • /
    • 제11권2호
    • /
    • pp.175-182
    • /
    • 2013
  • 본 연구에서는 주택 수요와 공급의 상호영향관계 메커니즘을 이용하여 가격 시뮬레이션 모형을 개발하였다. 가격 시뮬레이션 모형의 핵심 알고리즘은 피드백 제어 이론을 이용한 시스템 다이나믹스 기반의 스톡 플로우 변수이며, 이러한 원리를 이용하여 서울지역 아파트 가격변화 행태를 모델링하였다. 가격 행태를 결정하는 피드백 메커니즘은 중장기 경기변동 시나리오 하에 대출 이자율을 정책변수로 아파트 매매 수요자와 공급자 규모를 스톡 변수로 설정하고, 이들 간의 상호 영향관계를 검증하였다. 본 논문을 통하여 향후 아파트 가격 추이는 아파트 매매 수요자와 공급자 규모의 행태 변화와 수요자와 공급자가 갖는 가격에 대한 반응 매개변수간의 영향관계로 구성된다. 또한 향후 경기 전망 및 대출이자율 등 거시경제의 상황에 따라 아파트 매매가격은 변화함을 알 수 있었다. 제시된 아파트 매매 가격 시뮬레이션 계량모델은 양도세 및 취득세 감면 등 비 금융 관련 부동산정책변수와 대출이자 조정 등 금융 관련 정책변수의 보다 정확하고 충분한 데이터를 적용하면 실무 적용과 정부 주택정책입안에 활용 할 수 있을 것으로 판단된다.

Word2Vec을 활용한 뉴스 기반 주가지수 방향성 예측용 감성 사전 구축 (News based Stock Market Sentiment Lexicon Acquisition Using Word2Vec)

  • 김다예;이영인
    • 한국빅데이터학회지
    • /
    • 제3권1호
    • /
    • pp.13-20
    • /
    • 2018
  • 주식 시장에 대한 예측은 오랜 기간 많은 이들의 꿈이었다. 하지만 수많은 노력에도 불구하고 주식 시장을 정확하게 예측하기란 쉬운 일이 아니었다. 본 연구는 주식 시장의 방향성에 주목하여 이 방향성을 예측할 수 있는 감성사전을 구축하는 새로운 방법을 제시한다. 이를 위해 2015년 1월 1일부터 2017년 12월 31일까지 3년간의 증시 뉴스 25,000여 건의 데이터를 수집하여, 문맥을 고려하기 위한 Word2Vec을 적용하였다. 이를 바탕으로 뉴스에 감성분석을 실시하여 KOSPI 종가 지수를 예측해 보았다.

M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발 (Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms)

  • 양훈석;김선웅;최흥식
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.63-83
    • /
    • 2019
  • 투자자들은 기업의 내재가치 분석, 기술적 보조지표 분석 등 복잡한 분석보다 차트(chart)에 나타난 그래프(graph)의 모양으로 매매 시점을 찾는 직관적인 방법을 더 선호하는 편이다. 하지만 패턴(pattern) 분석 기법은 IT 구현의 난이도 때문에 사용자들의 요구에 비해 전산화가 덜 된 분야로 여겨진다. 최근에는 인공지능(artificial intelligence, AI) 분야에서 신경망을 비롯한 다양한 기계학습(machine learning) 기법을 사용하여 주가의 패턴을 연구하는 사례가 많아졌다. 특히 IT 기술의 발전으로 방대한 차트 데이터를 분석하여 주가 예측력이 높은 패턴을 발굴하는 것이 예전보다 쉬워졌다. 지금까지의 성과로 볼 때 가격의 단기 예측력은 높아졌지만, 장기 예측력은 한계가 있어서 장기 투자보다 단타 매매에서 활용되는 수준이다. 이외에 과거 기술력으로 인식하지 못했던 패턴을 기계적으로 정확하게 찾아내는 데 초점을 맞춘 연구도 있지만 찾아진 패턴이 매매에 적합한지 아닌지는 별개의 문제이기 때문에 실용적인 부분에서 취약할 수 있다. 본 연구는 주가 예측력이 있는 패턴을 찾으려는 기존 연구 방법과 달리 패턴들을 먼저 정의해 놓고 확률기반으로 선택해서 매매하는 방법을 제안한다. 5개의 전환점으로 정의한 Merrill(1980)의 M&W 파동 패턴은 32가지의 패턴으로 시장 국면 대부분을 설명할 수 있다. 전환점만으로 패턴을 분류하기 때문에 패턴 인식의 정확도를 높이기 위해 드는 비용을 줄일 수 있다. 32개 패턴으로 만들 수 있는 조합의 수는 전수 테스트가 불가능한 수준이다. 그래서 최적화 문제와 관련한 연구들에서 가장 많이 사용되고 있는 인공지능 알고리즘(algorithm) 중 하나인 유전자 알고리즘(genetic algorithm, GA)을 이용하였다. 그리고 미래의 주가가 과거를 반영한다 해도 같게 움직이지 않기 때문에 전진 분석(walk-forward analysis, WFA)방법을 적용하여 과최적화(overfitting)의 실수를 줄이도록 하였다. 20종목씩 6개의 포트폴리오(portfolio)를 구성하여 테스트해 본 결과에 따르면 패턴 매매에서 가격 변동성이 어느 정도 수반되어야 하며 패턴이 진행 중일 때보다 패턴이 완성된 후에 진입, 청산하는 것이 효과적임을 확인하였다.

팜유 가격 예측을 위한 딥러닝 기반 단기 시계열 예측 모델링 (Deep Learning-Based Short-Term Time Series Forecasting Modeling for Palm Oil Price Prediction)

  • 배성호;김명선;정우혁;우지환
    • 경영정보학연구
    • /
    • 제26권2호
    • /
    • pp.45-57
    • /
    • 2024
  • 본 연구에서는 딥러닝 기반의 팜유(Crude Palm Oil: CPO) 가격 예측 방법론을 개발하였다. 팜유는 그 생산 수율과 경제적 효율성으로 인해 다양한 산업에서 중요한 자원으로 활용되고 있으며, 이로 인해 팜유 가격 변동성에 대한 산업계의 관심이 증가하고 있다. 따라서, 팜유 가격 예측을 위한 연구가 활발히 진행되고 있으나, 많은 연구가 시계열 예측 기반으로 정확도에 한계점을 가지고 있다. 본 연구는 기존 방법론의 주요 한계인 정상성 부재 문제를 해결하기 위해 현재 가격 대비 미래 가격의 비율을 종속변수로 사용하는 새로운 모델을 제시한다. 이 접근법은 주식 가격 예측에서의 수익(return) 모델링에 착안하여 개발되었으며, 단순 가격 예측보다 더 높은 성능을 나타낸다. 또한, 다변량 시계열 예측에서 중요한 요소인 독립변수의 지연 값(lag)을 고려하여, 불필요한 잡음을 제거하고 예측 모델의 안정성을 높이는 방법론을 채택했다. 이 연구는 팜유 가격 예측의 정확도를 향상시키는데 중요한 기여를 하며, 시계열 데이터가 중요한 다른 경제적 예측 문제에도 적용 가능한 접근법을 제시한다는 점에서 산업계에 큰 의미가 있다.

SNS와 뉴스기사의 감성분석과 기계학습을 이용한 주가예측 모형 비교 연구 (A Comparative Study between Stock Price Prediction Models Using Sentiment Analysis and Machine Learning Based on SNS and News Articles)

  • 김동영;박제원;최재현
    • 한국IT서비스학회지
    • /
    • 제13권3호
    • /
    • pp.221-233
    • /
    • 2014
  • Because people's interest of the stock market has been increased with the development of economy, a lot of studies have been going to predict fluctuation of stock prices. Latterly many studies have been made using scientific and technological method among the various forecasting method, and also data using for study are becoming diverse. So, in this paper we propose stock prices prediction models using sentiment analysis and machine learning based on news articles and SNS data to improve the accuracy of prediction of stock prices. Stock prices prediction models that we propose are generated through the four-step process that contain data collection, sentiment dictionary construction, sentiment analysis, and machine learning. The data have been collected to target newspapers related to economy in the case of news article and to target twitter in the case of SNS data. Sentiment dictionary was built using news articles among the collected data, and we utilize it to process sentiment analysis. In machine learning phase, we generate prediction models using various techniques of classification and the data that was made through sentiment analysis. After generating prediction models, we conducted 10-fold cross-validation to measure the performance of they. The experimental result showed that accuracy is over 80% in a number of ways and F1 score is closer to 0.8. The result can be seen as significantly enhanced result compared with conventional researches utilizing opinion mining or data mining techniques.