• Title/Summary/Keyword: Stock Portfolio

Search Result 179, Processing Time 0.024 seconds

A Method for Portfolio Construction Using a Clustering Technique on the Stock Market Networks (주식시장 네트워크에서 클러스터링 기법을 이용한 포트폴리오 구성 방법)

  • Chun, Bong-Hwan;Kim, Eun-Kyung;Jung, In-Jun;Woo, Gyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.1396-1399
    • /
    • 2012
  • 본 논문은 주식 투자 포트폴리오를 구성하기 위해 클러스터링 기법을 이용하는 방법을 제안한다. 클러스터링 기법은 패턴 공간 상의 특징 벡터로 표현된 패턴 데이터를 몇 개의 부분집합으로 나누는 작업을 의미한다. 본 연구에서는 주식시장 네트워크에 클러스터링 기법을 적용하여 안정성과 수익률이 높은 포트폴리오를 구성하는 방법을 제안한다. 그리고 추천 클러스터의 투자 적합여부를 데이터를 통해 확인한다. 2007년 주식 데이터를 대상으로 실험한 결과, 추천 클러스터의 수익률이 전체 수익률을 상회함을 확인할 수 있었다.

A Study on the Relations among Stock Return, Risk, and Book-to-Market Ratio (주식수익률, 위험, 장부가치 / 시장가치 비율의 관계에 관한 연구)

  • Kam, Hyung-Kyu;Shin, Yong-Jae
    • Journal of Industrial Convergence
    • /
    • v.2 no.2
    • /
    • pp.127-147
    • /
    • 2004
  • This paper examines the time-series relations among expected return, risk, and book-to-market(B/M) at the portfolio level. The time-series analysis is a natural alternative to cross-sectional regressions. An alternative feature of the time-series regressions is that they focus on changes in expected returns, not on average returns. Using the time-series analysis, we can directly test whether the three-factor model explains time-varying expected returns better than the characteristic-based model. These results should help distinguish between the risk and mispricing stories. We find that B/M is strongly associated with changes in risk, as measured by the Fama and French(1993) three-factor model. After controlling for changes in risk, B/M contains little additional information about expected returns. The evidence suggests that the three-factor model explains time-varying expected returns better than the characteristic-based model.

  • PDF

Predicting the FTSE China A50 Index Movements Using Sample Entropy

  • AKEEL, Hatem
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.3
    • /
    • pp.1-10
    • /
    • 2022
  • This research proposes a novel trading method based on sample entropy for the FTSE China A50 Index. The approach is used to determine the points at which the index should be bought and sold for various holding durations. The findings are then compared to three other trading strategies: buying and holding the index for the entire time period, using the Relative Strength Index (RSI), and using the Moving Average Convergence Divergence (MACD) as buying/selling signaling tools. The unique entropy trading method, which used 90-day holding periods and was called StEn(90), produced the highest cumulative return: 25.66 percent. Regular buy and hold, RSI, and MACD were all outperformed by this strategy. In fact, when applied to the same time periods, RSI and MACD had negative returns for the FTSE China A50 Index. Regular purchase and hold yielded a 6% positive return, whereas RSI yielded a 28.56 percent negative return and MACD yielded a 33.33 percent negative return.

Is The Idiosyncratic Volatility Puzzle Driven By A Missing Factor?

  • Hanjun Kim;Bumjean Sohn
    • Asia-Pacific Journal of Business
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • Purpose - We investigate whether a potential missing pricing factor plays a significant role in the idiosyncratic volatility puzzle. Design/methodology/approach - We theoretically show how a missing pricing factor can affect the idiosyncratic volatility puzzle, and also show how to get around the problem empirically. We adopt the Fama-French five factor model for the estimation of the idiosyncratic risk and use randomly constructed portfolios as test assets. Findings - We find that a missing factor does not drive the idiosyncratic volatility puzzle. Thus, we conclude that the idiosyncratic volatility does affect the risk premium of its stock. Research implications or Originality - The Fama-French five factor model does a pretty good job in explaining the risk premiums of stocks, and it can be used to reliably estimate idiosyncratic risk of stocks.

Performance Analysis of Trading Strategy using Gradient Boosting Machine Learning and Genetic Algorithm

  • Jang, Phil-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.147-155
    • /
    • 2022
  • In this study, we developed a system to dynamically balance a daily stock portfolio and performed trading simulations using gradient boosting and genetic algorithms. We collected various stock market data from stocks listed on the KOSPI and KOSDAQ markets, including investor-specific transaction data. Subsequently, we indexed the data as a preprocessing step, and used feature engineering to modify and generate variables for training. First, we experimentally compared the performance of three popular gradient boosting algorithms in terms of accuracy, precision, recall, and F1-score, including XGBoost, LightGBM, and CatBoost. Based on the results, in a second experiment, we used a LightGBM model trained on the collected data along with genetic algorithms to predict and select stocks with a high daily probability of profit. We also conducted simulations of trading during the period of the testing data to analyze the performance of the proposed approach compared with the KOSPI and KOSDAQ indices in terms of the CAGR (Compound Annual Growth Rate), MDD (Maximum Draw Down), Sharpe ratio, and volatility. The results showed that the proposed strategies outperformed those employed by the Korean stock market in terms of all performance metrics. Moreover, our proposed LightGBM model with a genetic algorithm exhibited competitive performance in predicting stock price movements.

Comparison of Dimension Reduction Methods for Time Series Factor Analysis: A Case Study (Value at Risk의 사후검증을 통한 다변량 시계열자료의 차원축소 방법의 비교: 사례분석)

  • Lee, Dae-Su;Song, Seong-Joo
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.4
    • /
    • pp.597-607
    • /
    • 2011
  • Value at Risk(VaR) is being widely used as a simple tool for measuring financial risk. Although VaR has a few weak points, it is used as a basic risk measure due to its simplicity and easiness of understanding. However, it becomes very difficult to estimate the volatility of the portfolio (essential to compute its VaR) when the number of assets in the portfolio is large. In this case, we can consider the application of a dimension reduction technique; however, the ordinary factor analysis cannot be applied directly to financial data due to autocorrelation. In this paper, we suggest a dimension reduction method that uses the time-series factor analysis and DCC(Dynamic Conditional Correlation) GARCH model. We also compare the method using time-series factor analysis with the existing method using ordinary factor analysis by backtesting the VaR of real data from the Korean stock market.

The Time-Varying Coefficient Fama - French Five Factor Model: A Case Study in the Return of Japan Portfolios

  • LIAMMUKDA, Asama;KHAMKONG, Manad;SAENCHAN, Lampang;HONGSAKULVASU, Napon
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.10
    • /
    • pp.513-521
    • /
    • 2020
  • In this paper, we have developed a Fama - French five factor model (FF5 model) from Fama & French (2015) by using concept of time-varying coefficient. For a data set, we have used monthly data form Kenneth R. French home page, it include Japan portfolios (classified by using size and book-to-market) and 5 factors from July 1990 to April 2020. The first analysis, we used Augmented Dickey-Fuller test (ADF test) for the stationary test, from the result, all Japan portfolios and 5 factors are stationary. Next analysis, we estimated a coefficient of Fama - French five factor model by using a generalized additive model with a thin-plate spline to create the time-varying coefficient Fama - French five factor model (TV-FF5 model). The benefit of this study is TV-FF5 model which can capture a different effect at different times of 5 factors but the traditional FF5 model can't do it. From the result, we can show a time-varying coefficient in all factors and in all portfolios, for time-varying coefficients of Rm-Rf, SMB, and HML are significant for all Japan portfolios, time-varying coefficients of RMW are positively significant for SM, and SH portfolio and time-varying coefficients of CMA are significant for SM, SH, and BM portfolio.

Do Stock Prices Reflect the Implications of Unexpected Inventories for Future Earnings? (과잉 재고자산투자의 시장반응에 대한 실증연구)

  • Kim, Chang-Bum;Park, Sang-Bong
    • Management & Information Systems Review
    • /
    • v.32 no.1
    • /
    • pp.63-85
    • /
    • 2013
  • This study tries to investigate the fundamental implications inherent in inventory asset information(specifically, unexpected inventory investment) by analyzing how the relationship between unexpected inventory investment and future operating performance. And we study how is the response of the stock market participants to the fundamental implications inherent in inventory asset information. Prior papers often assume the efficient market and they view the significant relation between stock prices and financial indicators as evidence of the contribution of such indicators to future earnings. Leading indicators are attracting the market's attention for equity valuation. We study whether one leading indicator (unexpected Inventories) forecasts future earnings, and whether market participants fully reflect the predictive ability when they sets share prices(Mishkin test, 1983). Our empirical results of the study are summarized as follows. Current unexpected inventory investment is negatively associated with future operating performance. Also, our evidence is that the stock market participants overprice the contribution of unexpected inventory investment when predicting future earnings. Furthermore, a hedge strategy that uses the overpricing gives significant future abnormal returns. The overall results help the users of financial reports, researchers of accounting, and the accounting principle setting body.

  • PDF

Risk Spillover between Shipping Company's Stock Price and Marine Freight Index (해운선사 주가와 해상운임지수 사이의 위험 전이효과)

  • Choi Ki-Hong
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.1
    • /
    • pp.115-129
    • /
    • 2023
  • This study analyzed the risk spillover of BDI on shipping company stock prices through the Copula-CoVaR method based on daily data from January 4, 2010, to October 31, 2022. The main empirical analysis results and policy implications are as follows. First, copula results showed that there was a weak dependence between BDI and shipping company stock prices, and PAN, KOR, and YEN were selected as the most fitting model for dynamic Student-t copula, HMM was selected as the rotated Gumbel copula, and KSS was selected as the best model. Second, in the results of CoVaR, it was confirmed that the upside (downside) CoVaR was significantly different from the upside (downside) VaR in all shipping companies. This means that BDI has a significant risk spillover on shipping companies. In addition, as for the risk spillover, the downside risk is generally lower than the upside risk, so the downside and upside risk spillover were found to be asymmetrical. Therefore, policymakers should strengthen external risk supervision and establish differentiated policies suitable for domestic conditions to prevent systematic risks from BDI shocks. And investors should reflect external risks from BDI fluctuations in their investment decisions and construct optimal investment portfolios to avoid risks. On the other hand, investors propose that the investment portfolio should be adjusted in consideration of the asymmetric characteristics of up and down risks when making investment decisions.

Market Created Risk and the Formation of Stock Price (시장조성위험(市場造成危險)과 주식가격(株式價格)의 형성(形成))

  • Jaang, Dae-Hong
    • The Korean Journal of Financial Management
    • /
    • v.8 no.1
    • /
    • pp.123-137
    • /
    • 1991
  • This paper developes a multiperiod trading model of securities price formation which extends the notion of market created risk introduced by Kraus and Smith [1989]. It is shown that stock price volalitility can depend on combinations of market parameters known to the market participants only imperfectly. Resulting portfolio rebalancing equilibria generate self-justifying price movements while market fundamental remain unchanged.

  • PDF