Proceedings of the Korea Information Processing Society Conference
/
2012.04a
/
pp.1396-1399
/
2012
본 논문은 주식 투자 포트폴리오를 구성하기 위해 클러스터링 기법을 이용하는 방법을 제안한다. 클러스터링 기법은 패턴 공간 상의 특징 벡터로 표현된 패턴 데이터를 몇 개의 부분집합으로 나누는 작업을 의미한다. 본 연구에서는 주식시장 네트워크에 클러스터링 기법을 적용하여 안정성과 수익률이 높은 포트폴리오를 구성하는 방법을 제안한다. 그리고 추천 클러스터의 투자 적합여부를 데이터를 통해 확인한다. 2007년 주식 데이터를 대상으로 실험한 결과, 추천 클러스터의 수익률이 전체 수익률을 상회함을 확인할 수 있었다.
This paper examines the time-series relations among expected return, risk, and book-to-market(B/M) at the portfolio level. The time-series analysis is a natural alternative to cross-sectional regressions. An alternative feature of the time-series regressions is that they focus on changes in expected returns, not on average returns. Using the time-series analysis, we can directly test whether the three-factor model explains time-varying expected returns better than the characteristic-based model. These results should help distinguish between the risk and mispricing stories. We find that B/M is strongly associated with changes in risk, as measured by the Fama and French(1993) three-factor model. After controlling for changes in risk, B/M contains little additional information about expected returns. The evidence suggests that the three-factor model explains time-varying expected returns better than the characteristic-based model.
The Journal of Asian Finance, Economics and Business
/
v.9
no.3
/
pp.1-10
/
2022
This research proposes a novel trading method based on sample entropy for the FTSE China A50 Index. The approach is used to determine the points at which the index should be bought and sold for various holding durations. The findings are then compared to three other trading strategies: buying and holding the index for the entire time period, using the Relative Strength Index (RSI), and using the Moving Average Convergence Divergence (MACD) as buying/selling signaling tools. The unique entropy trading method, which used 90-day holding periods and was called StEn(90), produced the highest cumulative return: 25.66 percent. Regular buy and hold, RSI, and MACD were all outperformed by this strategy. In fact, when applied to the same time periods, RSI and MACD had negative returns for the FTSE China A50 Index. Regular purchase and hold yielded a 6% positive return, whereas RSI yielded a 28.56 percent negative return and MACD yielded a 33.33 percent negative return.
Purpose - We investigate whether a potential missing pricing factor plays a significant role in the idiosyncratic volatility puzzle. Design/methodology/approach - We theoretically show how a missing pricing factor can affect the idiosyncratic volatility puzzle, and also show how to get around the problem empirically. We adopt the Fama-French five factor model for the estimation of the idiosyncratic risk and use randomly constructed portfolios as test assets. Findings - We find that a missing factor does not drive the idiosyncratic volatility puzzle. Thus, we conclude that the idiosyncratic volatility does affect the risk premium of its stock. Research implications or Originality - The Fama-French five factor model does a pretty good job in explaining the risk premiums of stocks, and it can be used to reliably estimate idiosyncratic risk of stocks.
Journal of the Korea Society of Computer and Information
/
v.27
no.11
/
pp.147-155
/
2022
In this study, we developed a system to dynamically balance a daily stock portfolio and performed trading simulations using gradient boosting and genetic algorithms. We collected various stock market data from stocks listed on the KOSPI and KOSDAQ markets, including investor-specific transaction data. Subsequently, we indexed the data as a preprocessing step, and used feature engineering to modify and generate variables for training. First, we experimentally compared the performance of three popular gradient boosting algorithms in terms of accuracy, precision, recall, and F1-score, including XGBoost, LightGBM, and CatBoost. Based on the results, in a second experiment, we used a LightGBM model trained on the collected data along with genetic algorithms to predict and select stocks with a high daily probability of profit. We also conducted simulations of trading during the period of the testing data to analyze the performance of the proposed approach compared with the KOSPI and KOSDAQ indices in terms of the CAGR (Compound Annual Growth Rate), MDD (Maximum Draw Down), Sharpe ratio, and volatility. The results showed that the proposed strategies outperformed those employed by the Korean stock market in terms of all performance metrics. Moreover, our proposed LightGBM model with a genetic algorithm exhibited competitive performance in predicting stock price movements.
Value at Risk(VaR) is being widely used as a simple tool for measuring financial risk. Although VaR has a few weak points, it is used as a basic risk measure due to its simplicity and easiness of understanding. However, it becomes very difficult to estimate the volatility of the portfolio (essential to compute its VaR) when the number of assets in the portfolio is large. In this case, we can consider the application of a dimension reduction technique; however, the ordinary factor analysis cannot be applied directly to financial data due to autocorrelation. In this paper, we suggest a dimension reduction method that uses the time-series factor analysis and DCC(Dynamic Conditional Correlation) GARCH model. We also compare the method using time-series factor analysis with the existing method using ordinary factor analysis by backtesting the VaR of real data from the Korean stock market.
LIAMMUKDA, Asama;KHAMKONG, Manad;SAENCHAN, Lampang;HONGSAKULVASU, Napon
The Journal of Asian Finance, Economics and Business
/
v.7
no.10
/
pp.513-521
/
2020
In this paper, we have developed a Fama - French five factor model (FF5 model) from Fama & French (2015) by using concept of time-varying coefficient. For a data set, we have used monthly data form Kenneth R. French home page, it include Japan portfolios (classified by using size and book-to-market) and 5 factors from July 1990 to April 2020. The first analysis, we used Augmented Dickey-Fuller test (ADF test) for the stationary test, from the result, all Japan portfolios and 5 factors are stationary. Next analysis, we estimated a coefficient of Fama - French five factor model by using a generalized additive model with a thin-plate spline to create the time-varying coefficient Fama - French five factor model (TV-FF5 model). The benefit of this study is TV-FF5 model which can capture a different effect at different times of 5 factors but the traditional FF5 model can't do it. From the result, we can show a time-varying coefficient in all factors and in all portfolios, for time-varying coefficients of Rm-Rf, SMB, and HML are significant for all Japan portfolios, time-varying coefficients of RMW are positively significant for SM, and SH portfolio and time-varying coefficients of CMA are significant for SM, SH, and BM portfolio.
This study tries to investigate the fundamental implications inherent in inventory asset information(specifically, unexpected inventory investment) by analyzing how the relationship between unexpected inventory investment and future operating performance. And we study how is the response of the stock market participants to the fundamental implications inherent in inventory asset information. Prior papers often assume the efficient market and they view the significant relation between stock prices and financial indicators as evidence of the contribution of such indicators to future earnings. Leading indicators are attracting the market's attention for equity valuation. We study whether one leading indicator (unexpected Inventories) forecasts future earnings, and whether market participants fully reflect the predictive ability when they sets share prices(Mishkin test, 1983). Our empirical results of the study are summarized as follows. Current unexpected inventory investment is negatively associated with future operating performance. Also, our evidence is that the stock market participants overprice the contribution of unexpected inventory investment when predicting future earnings. Furthermore, a hedge strategy that uses the overpricing gives significant future abnormal returns. The overall results help the users of financial reports, researchers of accounting, and the accounting principle setting body.
This study analyzed the risk spillover of BDI on shipping company stock prices through the Copula-CoVaR method based on daily data from January 4, 2010, to October 31, 2022. The main empirical analysis results and policy implications are as follows. First, copula results showed that there was a weak dependence between BDI and shipping company stock prices, and PAN, KOR, and YEN were selected as the most fitting model for dynamic Student-t copula, HMM was selected as the rotated Gumbel copula, and KSS was selected as the best model. Second, in the results of CoVaR, it was confirmed that the upside (downside) CoVaR was significantly different from the upside (downside) VaR in all shipping companies. This means that BDI has a significant risk spillover on shipping companies. In addition, as for the risk spillover, the downside risk is generally lower than the upside risk, so the downside and upside risk spillover were found to be asymmetrical. Therefore, policymakers should strengthen external risk supervision and establish differentiated policies suitable for domestic conditions to prevent systematic risks from BDI shocks. And investors should reflect external risks from BDI fluctuations in their investment decisions and construct optimal investment portfolios to avoid risks. On the other hand, investors propose that the investment portfolio should be adjusted in consideration of the asymmetric characteristics of up and down risks when making investment decisions.
This paper developes a multiperiod trading model of securities price formation which extends the notion of market created risk introduced by Kraus and Smith [1989]. It is shown that stock price volalitility can depend on combinations of market parameters known to the market participants only imperfectly. Resulting portfolio rebalancing equilibria generate self-justifying price movements while market fundamental remain unchanged.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.