• Title/Summary/Keyword: Stock Index Prediction

Search Result 96, Processing Time 0.026 seconds

A Prediction of Stock Price Through the Big-data Analysis (인터넷 뉴스 빅데이터를 활용한 기업 주가지수 예측)

  • Yu, Ji Don;Lee, Ik Sun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.154-161
    • /
    • 2018
  • This study conducted to predict the stock market prices based on the assumption that internet news articles might have an impact and effect on the rise and fall of stock market prices. The internet news articles were tested to evaluate the accuracy by comparing predicted values of the actual stock index and the forecasting models of the companies. This paper collected stock news from the internet, and analyzed and identified the relationship with the stock price index. Since the internet news contents consist mainly of unstructured texts, this study used text mining technique and multiple regression analysis technique to analyze news articles. A company H as a representative automobile manufacturing company was selected, and prediction models for the stock price index of company H was presented. Thus two prediction models for forecasting the upturn and decline of H stock index is derived and presented. Among the two prediction models, the error value of the prediction model (1) is low, and so the prediction performance of the model (1) is relatively better than that of the prediction model (2). As the further research, if the contents of this study are supplemented by real artificial intelligent investment decision system and applied to real investment, more practical research results will be able to be developed.

Determinants and Prediction of the Stock Market during COVID-19: Evidence from Indonesia

  • GOH, Thomas Sumarsan;HENRY, Henry;ALBERT, Albert
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • This research examines the stock market index determinants and the prediction using the FFT curve fitting of the Jakarta Stock Exchange (JKSE) Composite Index during the COVID-19 pandemic. This paper has used daily data of Jakarta Stock Exchange (JKSE) Composite Index, interest rate, and exchange rate from 15 October 2019 to 15 September 2020, and a total of 224 observations, retrieved from Indonesia Stock Exchange (IDX), Indonesia Statistics Central Bureau and Observation & Research of Taxation. The study covers descriptive statistics, multicollinearity test, hypothesis tests, determination test, and prediction using FFT curve fitting. The results unveil four fresh and robust evidence. Partially, the interest rate has affected positively and significantly the stock market index. Partially, the exchange rate has affected negatively and significantly the stock market index. The F-test result, interest rate, and exchange rate have significantly affected the stock market index (JKSE) simultaneously. Furthermore, the FFT curve fitting has predicted that the stock market fluctuates and increases over time. The results have shown a strong influence of the independent variables and the dependent variable. The value of Adjusted R-Square is 0.719, which means that the independent variables have simultaneously impacted the dependent variable for 71.9%; other factors have influenced the remaining 28.1%.

Two-Dimensional Attention-Based LSTM Model for Stock Index Prediction

  • Yu, Yeonguk;Kim, Yoon-Joong
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1231-1242
    • /
    • 2019
  • This paper presents a two-dimensional attention-based long short-memory (2D-ALSTM) model for stock index prediction, incorporating input attention and temporal attention mechanisms for weighting of important stocks and important time steps, respectively. The proposed model is designed to overcome the long-term dependency, stock selection, and stock volatility delay problems that negatively affect existing models. The 2D-ALSTM model is validated in a comparative experiment involving the two attention-based models multi-input LSTM (MI-LSTM) and dual-stage attention-based recurrent neural network (DARNN), with real stock data being used for training and evaluation. The model achieves superior performance compared to MI-LSTM and DARNN for stock index prediction on a KOSPI100 dataset.

Prediction of the Movement Directions of Index and Stock Prices Using Extreme Gradient Boosting (익스트림 그라디언트 부스팅을 이용한 지수/주가 이동 방향 예측)

  • Kim, HyoungDo
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.9
    • /
    • pp.623-632
    • /
    • 2018
  • Both investors and researchers are attentive to the prediction of stock price movement directions since the accurate prediction plays an important role in strategic decision making on stock trading. According to previous studies, taken together, one can see that different factors are considered depending on stock markets and prediction periods. This paper aims to analyze what data mining techniques show better performance with some representative index and stock price datasets in the Korea stock market. In particular, extreme gradient boosting technique, proving itself to be the fore-runner through recent open competitions, is applied to the prediction problem. Its performance has been analyzed in comparison with other data mining techniques reported good in the prediction of stock price movement directions such as random forests, support vector machines, and artificial neural networks. Through experiments with the index/price datasets of 12 years, it is identified that the gradient boosting technique is the best in predicting the movement directions after 1 to 4 days with a few partial equivalence to the other techniques.

A Prediction of Stock Price Movements Using Support Vector Machines in Indonesia

  • ARDYANTA, Ervandio Irzky;SARI, Hasrini
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.8
    • /
    • pp.399-407
    • /
    • 2021
  • Stock movement is difficult to predict because it has dynamic characteristics and is influenced by many factors. Even so, there are some approaches to predict stock price movements, namely technical analysis, fundamental analysis, and sentiment analysis. Many researches have tried to predict stock price movement by utilizing these analysis techniques. However, the results obtained are varied and inconsistent depending on the variables and object used. This is because stock price movement is influenced by a variety of factors, and it is likely that those studies did not cover all of them. One of which is that no research considers the use of fundamental analysis in terms of currency exchange rates and the use of foreign stock price index movement related to the technical analysis. This research aims to predict stock price movements in Indonesia based on sentiment analysis, technical analysis, and fundamental analysis using Support Vector Machine. The result obtained has a prediction accuracy rate of 65,33% on an average. The inclusion of currency exchange rate and foreign stock price index movement as a predictor in this research which can increase average prediction accuracy rate by 11.78% compared to the prediction without using these two variables which only results in average prediction accuracy rate of 53.55%.

Toward global optimization of case-based reasoning for the prediction of stock price index

  • Kim, Kyoung-jae;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.06a
    • /
    • pp.399-408
    • /
    • 2001
  • This paper presents a simultaneous optimization approach of case-based reasoning (CBR) using a genetic algorithm(GA) for the prediction of stock price index. Prior research suggested many hybrid models of CBR and the GA for selecting a relevant feature subset or optimizing feature weights. Most studies, however, used the GA for improving only a part of architectural factors for the CBR system. However, the performance of CBR may be enhanced when these factors are simultaneously considered. In this study, the GA simultaneously optimizes multiple factors of the CBR system. Experimental results show that a GA approach to simultaneous optimization of CBR outperforms other conventional approaches for the prediction of stock price index.

  • PDF

Using Evolutionary Optimization to Support Artificial Neural Networks for Time-Divided Forecasting: Application to Korea Stock Price Index

  • Oh, Kyong Joo
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.153-166
    • /
    • 2003
  • This study presents the time-divided forecasting model to integrate evolutionary optimization algorithm and change point detection based on artificial neural networks (ANN) for the prediction of (Korea) stock price index. The genetic algorithm(GA) is introduced as an evolutionary optimization method in this study. The basic concept of the proposed model is to obtain intervals divided by change points, to identify them as optimal or near-optimal change point groups, and to use them in the forecasting of the stock price index. The proposed model consists of three phases. The first phase detects successive change points. The second phase detects the change-point groups with the GA. Finally, the third phase forecasts the output with ANN using the GA. This study examines the predictability of the proposed model for the prediction of stock price index.

Two-Stage Forecasting Using Change-Point Detection and Artificial Neural Networks for Stock Price Index (주가지수예측에서의 변환시점을 반영한 이단계 신경망 예측모형)

  • Oh, Kyong-Joo;Kim, Kyoung-Jae;Han, In-Goo
    • Asia pacific journal of information systems
    • /
    • v.11 no.4
    • /
    • pp.99-111
    • /
    • 2001
  • The prediction of stock price index is a very difficult problem because of the complexity of stock market data. It has been studied by a number of researchers since they strongly affect other economic and financial parameters. The movement of stock price index has a series of change points due to the strategies of institutional investors. This study presents a two-stage forecasting model of stock price index using change-point detection and artificial neural networks. The basic concept of this proposed model is to obtain intervals divided by change points, to identify them as change-point groups, and to use them in stock price index forecasting. First, the proposed model tries to detect successive change points in stock price index. Then, the model forecasts the change-point group with the backpropagation neural network(BPN). Finally, the model forecasts the output with BPN. This study then examines the predictability of the integrated neural network model for stock price index forecasting using change-point detection.

  • PDF

Stock prediction using combination of BERT sentiment Analysis and Macro economy index

  • Jang, Euna;Choi, HoeRyeon;Lee, HongChul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.5
    • /
    • pp.47-56
    • /
    • 2020
  • The stock index is used not only as an economic indicator for a country, but also as an indicator for investment judgment, which is why research into predicting the stock index is ongoing. The task of predicting the stock price index involves technical, basic, and psychological factors, and it is also necessary to consider complex factors for prediction accuracy. Therefore, it is necessary to study the model for predicting the stock price index by selecting and reflecting technical and auxiliary factors that affect the fluctuation of the stock price according to the stock price. Most of the existing studies related to this are forecasting studies that use news information or macroeconomic indicators that create market fluctuations, or reflect only a few combinations of indicators. In this paper, this we propose to present an effective combination of the news information sentiment analysis and various macroeconomic indicators in order to predict the US Dow Jones Index. After Crawling more than 93,000 business news from the New York Times for two years, the sentiment results analyzed using the latest natural language processing techniques BERT and NLTK, along with five macroeconomic indicators, gold prices, oil prices, and five foreign exchange rates affecting the US economy Combination was applied to the prediction algorithm LSTM, which is known to be the most suitable for combining numeric and text information. As a result of experimenting with various combinations, the combination of DJI, NLTK, BERT, OIL, GOLD, and EURUSD in the DJI index prediction yielded the smallest MSE value.

News based Stock Market Sentiment Lexicon Acquisition Using Word2Vec (Word2Vec을 활용한 뉴스 기반 주가지수 방향성 예측용 감성 사전 구축)

  • Kim, Daye;Lee, Youngin
    • The Journal of Bigdata
    • /
    • v.3 no.1
    • /
    • pp.13-20
    • /
    • 2018
  • Stock market prediction has been long dream for researchers as well as the public. Forecasting ever-changing stock market, though, proved a Herculean task. This study proposes a novel stock market sentiment lexicon acquisition system that can predict the growth (or decline) of stock market index, based on economic news. For this purpose, we have collected 3-year's economic news from January 2015 to December 2017 and adopted Word2Vec model to consider the context of words. To evaluate the result, we performed sentiment analysis to collected news data with the automated constructed lexicon and compared with closings of the KOSPI (Korea Composite Stock Price Index), the South Korean stock market index based on economic news.