• Title/Summary/Keyword: Stochastic network models

Search Result 87, Processing Time 0.024 seconds

TGC-based Fish Growth Estimation Model using Gaussian Process Regression Approach (가우시안 프로세스 회귀를 통한 열 성장 계수 기반의 어류 성장 예측 모델)

  • Juhyoung Sung;Sungyoon Cho;Da-Eun Jung;Jongwon Kim;Jeonghwan Park;Kiwon Kwon;Young Myoung Ko
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.61-69
    • /
    • 2023
  • Recently, as the fishery resources are depleted, expectations for productivity improvement by 'rearing fishery' in land farms are greatly rising. In the case of land farms, unlike ocean environments, it is easy to control and manage environmental and breeding factors, and has the advantage of being able to adjust production according to the production plan. On the other hand, unlike in the natural environment, there is a disadvantage in that operation costs may significantly increase due to the artificial management for fish growth. Therefore, profit maximization can be pursued by efficiently operating the farm in accordance with the planned target shipment. In order to operate such an efficient farm and nurture fish, an accurate growth prediction model according to the target fish species is absolutely required. Most of the growth prediction models are mainly numerical results based on statistical analysis using farm data. In this paper, we present a growth prediction model from a stochastic point of view to overcome the difficulties in securing data and the difficulty in providing quantitative expected values for inaccuracies that existing growth prediction models from a statistical point of view may have. For a stochastic approach, modeling is performed by introducing a Gaussian process regression method based on water temperature, which is the most important factor in positive growth. From the corresponding results, it is expected that it will be able to provide reference values for more efficient farm operation by simultaneously providing the average value of the predicted growth value at a specific point in time and the confidence interval for that value.

Bayesian Network-based Probabilistic Management of Software Metrics for Refactoring (리팩토링을 위한 소프트웨어 메트릭의 베이지안 네트워크 기반 확률적 관리)

  • Choi, Seunghee;Lee, Goo Yeon
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1334-1341
    • /
    • 2016
  • In recent years, the importance of managing software defects in the implementation stage has emerged because of the rapid development and wide-range usage of intelligent smart devices. Even if not a few studies have been conducted on the prediction models for software defects, their outcomes have not been widely shared. This paper proposes an efficient probabilistic management model of software metrics based on the Bayesian network, to overcome limits such as binary defect prediction models. We expect the proposed model to configure the Bayesian network by taking advantage of various software metrics, which can help in identifying improvements for refactoring. Once the source code has improved through code refactoring, the measured related metric values will also change. The proposed model presents probability values reflecting the effects after defect removal, which can be achieved by improving metrics through refactoring. This model could cope with the conclusive binary predictions, and consequently secure flexibilities on decision making, using indeterminate probability values.

Layout optimization of wireless sensor networks for structural health monitoring

  • Jalsan, Khash-Erdene;Soman, Rohan N.;Flouri, Kallirroi;Kyriakides, Marios A.;Feltrin, Glauco;Onoufriou, Toula
    • Smart Structures and Systems
    • /
    • v.14 no.1
    • /
    • pp.39-54
    • /
    • 2014
  • Node layout optimization of structural wireless systems is investigated as a means to prolong the network lifetime without, if possible, compromising information quality of the measurement data. The trade-off between these antagonistic objectives is studied within a multi-objective layout optimization framework. A Genetic Algorithm is adopted to obtain a set of Pareto-optimal solutions from which the end user can select the final layout. The information quality of the measurement data collected from a heterogeneous WSN is quantified from the placement quality indicators of strain and acceleration sensors. The network lifetime or equivalently the network energy consumption is estimated through WSN simulation that provides realistic results by capturing the dynamics of the wireless communication protocols. A layout optimization study of a monitoring system on the Great Belt Bridge is conducted to evaluate the proposed approach. The placement quality of strain gauges and accelerometers is obtained as a ratio of the Modal Clarity Index and Mode Shape Expansion values that are computed from a Finite Element model of the monitored bridge. To estimate the energy consumption of the WSN platform in a realistic scenario, we use a discrete-event simulator with stochastic communication models. Finally, we compare the optimization results with those obtained in a previous work where the network energy consumption is obtained via deterministic communication models.

A Study on Stochastic Wave Propagation Model to Generate Various Uninterrupted Traffic Flows (다양한 연속 교통류 구현을 위한 확률파장전파모형의 개발)

  • Chang, Hyun-Ho;Baek, Seung-Kirl;Park, Jae-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.4 s.75
    • /
    • pp.147-158
    • /
    • 2004
  • A class of SWP(Stochastic Wane Propagation) models microscopically mimics individual vehicles' stochastic behavior and traffic jam propagation with simplified car-following models based on CA(Cellular Automata) theory and macroscopically captures dynamic traffic flow relationships based on statistical physics. SWP model, a program-oriented model using both discrete time-space and integer data structure, can simulate a huge road network with high-speed computing time. However, the model has shortcomings to both the capturing of low speed within a jam microscopically and that of the density and back propagation speed of traffic congestion macroscopically because of the generation of spontaneous jam through unrealistic collision avoidance. In this paper, two additional rules are integrated into the NaSch model. The one is SMR(Stopping Maneuver Rule) to mimic vehicles' stopping process more realistically in the tail of traffic jams. the other is LAR(Low Acceleration Rule) for the explanation of low speed characteristics within traffic jams. Therefore, the CA car-following model with the two rules prevents the lockup condition within a heavily traffic density capturing both the stopping maneuver behavior in the tail of traffic jam and the low acceleration behavior within jam microscopically, and generates more various macroscopic traffic flow mechanism than NaSch model's with the explanation of propagation speed and density of traffic jam.

Design of Stochastic Movement Model Considering Sensor Node Reliability and Energy Efficiency

  • Cho, Do-Hyeoun;Yeol, Yun Dai;Hwang, Chi-Gon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.156-162
    • /
    • 2020
  • Wireless Sensor Network (WSN) field is mainly studied to monitor and characterize large-scale physical environments to track various environmental or physical conditions, such as temperature, pressure, wind speed and humidity. WSN can be used in various applications such as wild surveillance, military target tracking and monitoring, dangerous environmental exploration and natural disaster relief. We design probabilistic mobile models that apply to mobile ad hoc network mobile environments. A probabilistic shift model proposed by dividing the number of moving nodes and the distance of travel into two categories to express node movement characteristics. The proposed model of movement through simulation was compared with the existing random movement model, ensuring that the width and variation rate of the first node node node node (FND) was stable regardless of the node movement rate. In addition, when the proposed mobile model is applied to the routing protocol, the superiority of network life can be verified from measured FND values. We overcame the limitations of the existing random movement model, showing excellent characteristics in terms of energy efficiency and stable in terms of changes in node movement.

Network analysis of urban-to-rural migration (네트워크 모형을 이용한 귀농인구 이동 분석)

  • Lee, Hyunsoo;Roh, Jaesun;Jung, Jin Hwa;Jang, Woncheol
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.3
    • /
    • pp.487-503
    • /
    • 2016
  • Urban-to-rural migration for farming has recently emerged as a new way to vitalize rural economies in a fast-aging rural Korea. In this paper, we analyze the 2013 data of returning farmers with statistical network methods. We identify urban to rural migration hubs with centrality measures and find migration trends based on regional clusters with similar features via statistical network models. We also fit a latent distance model to investigate the role of distance in migration.

Study on Water Stage Prediction Using Hybrid Model of Artificial Neural Network and Genetic Algorithm (인공신경망과 유전자알고리즘의 결합모형을 이용한 수위예측에 관한 연구)

  • Yeo, Woon-Ki;Seo, Young-Min;Lee, Seung-Yoon;Jee, Hong-Kee
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.8
    • /
    • pp.721-731
    • /
    • 2010
  • The rainfall-runoff relationship is very difficult to predict because it is complicate factor affected by many temporal and spatial parameters of the basin. In recent, models which is based on artificial intelligent such as neural network, genetic algorithm fuzzy etc., are frequently used to predict discharge while stochastic or deterministic or empirical models are used in the past. However, the discharge data which are generally used for prediction as training and validation set are often estimated from rating curve which has potential error in its estimation that makes a problem in reliability. Therefore, in this study, water stage is predicted from antecedent rainfall and water stage data for short term using three models of neural network which trained by error back propagation algorithm and optimized by genetic algorithm and training error back propagation after it is optimized by genetic algorithm respectively. As the result, the model optimized by Genetic Algorithm gives the best forecasting ability which is not much decreased as the forecasting time increase. Moreover, the models using stage data only as the input data give better results than the models using precipitation data with stage data.

Impact of Mathematical Modeling Schemes into Accuracy Representation of GPS Control Surveying (수학적 모형화 기법이 GPS 기준점 측량 정확도 표현에 미치는 영향)

  • Lee, Hungkyu;Seo, Wansoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.5
    • /
    • pp.445-458
    • /
    • 2012
  • The objective of GPS control surveying is ultimately to determine coordinate sets of control points within targeted accuracy through a series of observations and network adjustments. To this end, it is of equivalent importance for the accuracy of these coordinates to be realistically represented by using an appropriate method. The accuracy representation can be quantitively made by the variance-covariance matrices of the estimates, of which features are sensitive to the mathematical models used in the adjustment. This paper deals with impact of functional and stochastic modeling techniques into the accuracy representation of the GPS control surveying with a view of gaining background for its standardization. In order to achieve this goal, mathematical theory and procedure of the single-baseline based multi-session adjustment has been rigorously reviewed together with numerical analysis through processing real world data. Based on this study, it was possible to draw a conclusion that weighted-constrained adjustment with the empirical stochastic model was among the best scheme to more realistically describe both of the absolute and relative accuracies of the GPS surveying results.

Data Mining based Forest Fires Prediction Models using Meteorological Data (기상 데이터를 이용한 데이터 마이닝 기반의 산불 예측 모델)

  • Kim, Sam-Keun;Ahn, Jae-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.521-529
    • /
    • 2020
  • Forest fires are one of the most important environmental risks that have adverse effects on many aspects of life, such as the economy, environment, and health. The early detection, quick prediction, and rapid response of forest fires can play an essential role in saving property and life from forest fire risks. For the rapid discovery of forest fires, there is a method using meteorological data obtained from local sensors installed in each area by the Meteorological Agency. Meteorological conditions (e.g., temperature, wind) influence forest fires. This study evaluated a Data Mining (DM) approach to predict the burned area of forest fires. Five DM models, e.g., Stochastic Gradient Descent (SGD), Support Vector Machines (SVM), Decision Tree (DT), Random Forests (RF), and Deep Neural Network (DNN), and four feature selection setups (using spatial, temporal, and weather attributes), were tested on recent real-world data collected from Gyeonggi-do area over the last five years. As a result of the experiment, a DNN model using only meteorological data showed the best performance. The proposed model was more effective in predicting the burned area of small forest fires, which are more frequent. This knowledge derived from the proposed prediction model is particularly useful for improving firefighting resource management.

Impact of Sensing Models on Probabilistic Blanket Coverage in Wireless Sensor Network (무선 센서 네트워크에서 Probabilistic Blanket Coverage에 대한 센싱 모델의 영향)

  • Pudasaini, Subodh;Kang, Moon-Soo;Shin, Seok-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.697-705
    • /
    • 2010
  • In Wireless Sensor Networks (WSNs), blanket (area) coverage analysis is generally carried to find the minimum number of active sensor nodes required to cover a monitoring interest area with the desired fractional coverage-threshold. Normally, the coverage analysis is performed using the stochastic geometry as a tool. The major component of such coverage analysis is the assumed sensing model. Hence, the accuracy of such analysis depends on the underlying assumption of the sensing model: how well the assumed sensing model characterizes the real sensing phenomenon. In this paper, we review the coverage analysis for different deterministic and probabilistic sensing models like Boolean and Shadow-fading model; and extend the analysis for Exponential and hybrid Boolean-Exponential model. From the analytical performance comparison, we demonstrate the redundancy (in terms of number of sensors) that could be resulted due to the coverage analysis based on the detection capability mal-characterizing sensing models.