• Title/Summary/Keyword: Stochastic equation

Search Result 319, Processing Time 0.02 seconds

STOCHASTIC CALCULUS FOR ANALOGUE OF WIENER PROCESS

  • Im, Man-Kyu;Kim, Jae-Hee
    • The Pure and Applied Mathematics
    • /
    • v.14 no.4
    • /
    • pp.335-354
    • /
    • 2007
  • In this paper, we define an analogue of generalized Wiener measure and investigate its basic properties. We define (${\hat}It{o}$ type) stochastic integrals with respect to the generalized Wiener process and prove the ${\hat}It{o}$ formula. The existence and uniqueness of the solution of stochastic differential equation associated with the generalized Wiener process is proved. Finally, we generalize the linear filtering theory of Kalman-Bucy to the case of a generalized Wiener process.

  • PDF

Vibration and stability of fluid conveying pipes with stochastic parameters

  • Ganesan, R.;Ramu, S. Anantha
    • Structural Engineering and Mechanics
    • /
    • v.3 no.4
    • /
    • pp.313-324
    • /
    • 1995
  • Flexible cantilever pipes conveying fluids with high velocity are analysed for their dynamic response and stability behaviour. The Young's modulus and mass per unit length of the pipe material have a stochastic distribution. The stochastic fields, that model the fluctuations of Young's modulus and mass density are characterized through their respective means, variances and autocorrelation functions or their equivalent power spectral density functions. The stochastic non self-adjoint partial differential equation is solved for the moments of characteristic values, by treating the point fluctuations to be stochastic perturbations. The second-order statistics of vibration frequencies and mode shapes are obtained. The critical flow velocity is first evaluated using the averaged eigenvalue equation. Through the eigenvalue equation, the statistics of vibration frequencies are transformed to yield critical flow velocity statistics. Expressions for the bounds of eigenvalues are obtained, which in turn yield the corresponding bounds for critical flow velocities.

BACKWARD SELF-SIMILAR STOCHASTIC PROCESSES IN STOCHASTIC DIFFERENTIAL EQUATIONS

  • Oh, Jae-Pill
    • Korean Journal of Mathematics
    • /
    • v.6 no.2
    • /
    • pp.259-279
    • /
    • 1998
  • For the forward-backward semimartingale, we can define the backward semimartingale flow which is generated by the backward canonical stochastic differential equation. Therefore, we define the backward self-similar stochastic processes, and we study the backward self-similar stochastic flows through the canonical stochastic differential equations.

  • PDF

LOCAL VOLATILITY FOR QUANTO OPTION PRICES WITH STOCHASTIC INTEREST RATES

  • Lee, Youngrok;Lee, Jaesung
    • Korean Journal of Mathematics
    • /
    • v.23 no.1
    • /
    • pp.81-91
    • /
    • 2015
  • This paper is about the local volatility for the price of a European quanto call option. We derive the explicit formula of the local volatility with constant foreign and domestic interest rates by adapting the methods of Dupire and Derman & Kani. Furthermore, we obtain the Dupire equation for the local volatility with stochastic interest rates.

SOME STABILITY RESULTS FOR SEMILINEAR STOCHASTIC HEAT EQUATION DRIVEN BY A FRACTIONAL NOISE

  • El Barrimi, Oussama;Ouknine, Youssef
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.631-648
    • /
    • 2019
  • In this paper, we consider a semilinear stochastic heat equation driven by an additive fractional white noise. Under the pathwise uniqueness property, we establish various strong stability results. As a consequence, we give an application to the convergence of the Picard successive approximation.

MOMENT ESTIMATE AND EXISTENCE FOR THE SOLUTION OF NEUTRAL STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATION

  • Chen, Huabin;Wan, Qunjia
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.279-298
    • /
    • 2022
  • In this paper, the existence and uniqueness for the global solution of neutral stochastic functional differential equation is investigated under the locally Lipschitz condition and the contractive condition. The implicit iterative methodology and the Lyapunov-Razumikhin theorem are used. The stability analysis for such equations is also applied. One numerical example is provided to illustrate the effectiveness of the theoretical results obtained.

Moment Lyapunov exponents of the Parametrical Hill's equation under the excitation of two correlated wideband noises

  • Janevski, Goran;Kozic, Predrag;Pavlovic, Ivan
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.525-540
    • /
    • 2014
  • The Lyapunov exponent and moment Lyapunov exponents of Hill's equation with frequency and damping coefficient fluctuated by correlated wideband random processes are studied in this paper. The method of stochastic averaging, both the first-order and the second-order, is applied. The averaged $It\hat{o}$ differential equation governing the pth norm is established and the pth moment Lyapunov exponents and Lyapunov exponent are then obtained. This method is applied to the study of the almost-sure and the moment stability of the stationary solution of the thin simply supported beam subjected to time-varying axial compressions and damping which are small intensity correlated stochastic excitations. The validity of the approximate results is checked by the numerical Monte Carlo simulation method for this stochastic system.

SPARSE GRID STOCHASTIC COLLOCATION METHOD FOR STOCHASTIC BURGERS EQUATION

  • Lee, Hyung-Chun;Nam, Yun
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.193-213
    • /
    • 2017
  • We investigate an efficient approximation of solution to stochastic Burgers equation driven by an additive space-time noise. We discuss existence and uniqueness of a solution through the Orstein-Uhlenbeck (OU) process. To approximate the OU process, we introduce the Karhunen-$Lo{\grave{e}}ve$ expansion, and sparse grid stochastic collocation method. About spatial discretization of Burgers equation, two separate finite element approximations are presented: the conventional Galerkin method and Galerkin-conservation method. Numerical experiments are provided to demonstrate the efficacy of schemes mentioned above.