References
- E. Allen, S. Novosel, and Z. Zhang, Finite element and difference approximation of some linear stochastic partial differential equations, Stoch. Stoch. Rep. 64 (1998), no. 1-2, 117-142. https://doi.org/10.1080/17442509808834159
- K. Atkinson and W. Han, Theoretical Numerical Analysis: A Functional Analysis Framework, second ed., Springer, New York, 2005.
- I. Babuska, F. Nobile, and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal. 45 (2007), no. 3, 1005-1034. https://doi.org/10.1137/050645142
- V. Barthelmann, E. Novak, and K. Ritter, High dimensional polynomial interpolation on sparse grids, Adv. Comput. Math. 12 (2000), no. 4, 273-288. https://doi.org/10.1023/A:1018977404843
- D. Blomker and A. Jentzen, Garlerkin approximations for the stochastic Burgers equation, SIAM J. Numer. Anal. 51 (2013), no. 1, 694-715. https://doi.org/10.1137/110845756
- H. J. Bungartz and M. Griebel, Sparse grids, Acta Numer. 13 (2004), 147-269. https://doi.org/10.1017/S0962492904000182
- A. J. Chorin and O. Hald, Stochastic Tools in Mathematics and Science, second ed., Springer, New York, 2009.
- R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. 2, Wiley-Interscience, New York, 1953.
- G. Da Prato, A. Debussche, and R. Temam, Stochastic Burgers' equation, Nonlinear Differential Equations Appl. 1 (1994), no. 4, 389-402. https://doi.org/10.1007/BF01194987
- G. Da Prato and D. Gatarek, Stochastic Burgers equation with correlated noise, Stoch. Stoch. Rep. 52 (1995), no. 1-2, 29-41. https://doi.org/10.1080/17442509508833962
- G. Da Prato and J. Zabcayk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 2008.
- Q. Du and T. Zhang, Numerical approximation of some linear stochastic partial differential equations driven by spectral additive noises, SIAM J. Numer. Anal. 40 (2003), 1421-1445.
- L. C. Evans, Partial Differential Equations, second ed. American Mathematical Society, Providence, RI, 2010.
- C. A. J. Fletcher, Computational Garlerkin methods, Springer-Verlag, New York, 1984.
- R. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, revised ed., Dover Publications, New York, 2003.
- A. Jentzen and P. E. Kloeden, Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465 (2009), no. 2102, 649-667. https://doi.org/10.1098/rspa.2008.0325
- M. Loeve, Probability Theory, fourth ed., Springer, New York, 1977.
- J. Ming and M. Gunzburger, Efficient numerical method for stochastic partial differential equations through transformation to equations driven by correlated noise, Int. J. Uncertain. Quantif. 3 (2013), no. 4, 321-329. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2012003670
- E. Novak and K. Ritter, High dimensional integration of smooth functions over cubes, Numer. Math. 75 (1996), no. 1, 79-97. https://doi.org/10.1007/s002110050231
- E. Novak, K. Ritter, R. Schmitt, and A. Steinbauer, On an interpolatory method for high dimensional integration, J. Comput. Appl. Math. 112 (1999), no. 1-2, 215-228. https://doi.org/10.1016/S0377-0427(99)00222-8
- F. Nobile, R. Tempone, and C. G. Webster, A sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal. 46 (2008), no. 5, 2309-2345. https://doi.org/10.1137/060663660
- F. Nobile, R. Tempone, and C. G. Webster, An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal. 46 (2008), no. 5, 2411-2442. https://doi.org/10.1137/070680540
- M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, second ed., Springer, New York, 2004.
- S. A. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl. Akad. Nauk SSSR 4 (1963), 240-243.
- G. W. Wasilkowski and H. Wozniakowski, Explicit cost bounds of algorithms for multivariate tensor product problems, J. Complexity 11 (1995), no. 1, 1-56. https://doi.org/10.1006/jcom.1995.1001