• 제목/요약/키워드: Stochastic Learning

검색결과 142건 처리시간 0.025초

딥러닝과 확률모델을 이용한 실시간 토마토 개체 추적 알고리즘 (Real-Time Tomato Instance Tracking Algorithm by using Deep Learning and Probability Model)

  • 고광은;박현지;장인훈
    • 로봇학회논문지
    • /
    • 제16권1호
    • /
    • pp.49-55
    • /
    • 2021
  • Recently, a smart farm technology is drawing attention as an alternative to the decline of farm labor population problems due to the aging society. Especially, there is an increasing demand for automatic harvesting system that can be commercialized in the market. Pre-harvest crop detection is the most important issue for the harvesting robot system in a real-world environment. In this paper, we proposed a real-time tomato instance tracking algorithm by using deep learning and probability models. In general, It is hard to keep track of the same tomato instance between successive frames, because the tomato growing environment is disturbed by the change of lighting condition and a background clutter without a stochastic approach. Therefore, this work suggests that individual tomato object detection for each frame is conducted by YOLOv3 model, and the continuous instance tracking between frames is performed by Kalman filter and probability model. We have verified the performance of the proposed method, an experiment was shown a good result in real-world test data.

Analysis and Design of Jumping Robot System Using the Model Transformation Method

  • Suh Jin-Ho;Yamakita Masaki
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권2호
    • /
    • pp.200-210
    • /
    • 2006
  • This paper proposes the motion generation method in which the movement of the 3-links leg subsystem in constrained to slider-link and a singular posture can be easily avoided. This method is the realization of jumping control moving in a vertical direction, which mimics a cat's behavior. To consider the movement from the point of the constraint mechanical system, a robotics system for realizing the motion will change its configuration according to the position. The effectiveness of the proposed scheme is illustrated by simulation and experimental results.

Coherence Structure in the Discourse of Probability Modelling

  • Jang, Hongshick
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제17권1호
    • /
    • pp.1-14
    • /
    • 2013
  • Stochastic phenomena induce us to construct a probability model and structure our thinking; corresponding models help us to understand and interpret the reality. They in turn equip us with tools to recognize, reconstruct and solve problems. Therefore, various implications in terms of methodology as well as epistemology naturally flow from different adoptions of models for probability. Right from the basic scenarios of different perspectives to explore reality, students are occasionally exposed to misunderstanding and misinterpretations. With realistic examples a multi-faceted image of probability and different interpretation will be considered in mathematical modelling activities. As an exploratory investigation, mathematical modelling activity for probability learning was elaborated through semiotic analysis. Especially, the coherence structure in mathematical modelling discourse was reviewed form a semiotic perspective. The discourses sampled from group activities were analyzed on the basis of semiotic perspectives taxonomical coherence relations.

A Stochastic Model for Virtual Data Generation of Crack Patterns in the Ceramics Manufacturing Process

  • Park, Youngho;Hyun, Sangil;Hong, Youn-Woo
    • 한국세라믹학회지
    • /
    • 제56권6호
    • /
    • pp.596-600
    • /
    • 2019
  • Artificial intelligence with a sufficient amount of realistic big data in certain applications has been demonstrated to play an important role in designing new materials or in manufacturing high-quality products. To reduce cracks in ceramic products using machine learning, it is desirable to utilize big data in recently developed data-driven optimization schemes. However, there is insufficient big data for ceramic processes. Therefore, we developed a numerical algorithm to make "virtual" manufacturing data sets using indirect methods such as computer simulations and image processing. In this study, a numerical algorithm based on the random walk was demonstrated to generate images of cracks by adjusting the conditions of the random walk process such as the number of steps, changes in direction, and the number of cracks.

Online Parameter Estimation and Convergence Property of Dynamic Bayesian Networks

  • Cho, Hyun-Cheol;Fadali, M. Sami;Lee, Kwon-Soon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권4호
    • /
    • pp.285-294
    • /
    • 2007
  • In this paper, we investigate a novel online estimation algorithm for dynamic Bayesian network(DBN) parameters, given as conditional probabilities. We sequentially update the parameter adjustment rule based on observation data. We apply our algorithm to two well known representations of DBNs: to a first-order Markov Chain(MC) model and to a Hidden Markov Model(HMM). A sliding window allows efficient adaptive computation in real time. We also examine the stochastic convergence and stability of the learning algorithm.

Stacked Autoencoder를 이용한 특징 추출 기반 Fuzzy k-Nearest Neighbors 패턴 분류기 설계 (Design of Fuzzy k-Nearest Neighbors Classifiers based on Feature Extraction by using Stacked Autoencoder)

  • 노석범;오성권
    • 전기학회논문지
    • /
    • 제64권1호
    • /
    • pp.113-120
    • /
    • 2015
  • In this paper, we propose a feature extraction method using the stacked autoencoders which consist of restricted Boltzmann machines. The stacked autoencoders is a sort of deep networks. Restricted Boltzmann machines (RBMs) are probabilistic graphical models that can be interpreted as stochastic neural networks. In terms of pattern classification problem, the feature extraction is a key issue. We use the stacked autoencoders networks to extract new features which have a good influence on the improvement of the classification performance. After feature extraction, fuzzy k-nearest neighbors algorithm is used for a classifier which classifies the new extracted data set. To evaluate the classification ability of the proposed pattern classifier, we make some experiments with several machine learning data sets.

SVM-NNM을 이용한 증발접시 증발량자료의 분해기법 (Disaggregation Approach of the Pan Evaporation using SVM-NNM)

  • 김성원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1560-1563
    • /
    • 2010
  • The goal of this research is to apply the neural networks model for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks model consists of support vector machine neural networks model (SVM-NNM). The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks model, it is composed of training and test performances, respectively. The training and test performances consist of the historic, the generated, and the mixed data, respectively. From this research, we evaluate the impact of SVM-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

Manifold Learning을 통한 표정과 Action Unit 간의 상관성에 관한 연구 (A Study in Relationship between Facial Expression and Action Unit)

  • 김선빈;김현철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.763-766
    • /
    • 2018
  • 표정은 사람들 사이에서 감정을 표현하는 강력한 비언어적 수단이다. 표정 인식은 기계학습에서 아주 중요한 분야 중에 하나이다. 표정 인식에 사용되는 기계학습 모델들은 사람 수준의 성능을 보여준다. 하지만 좋은 성능에도 불구하고, 기계학습 모델들은 표정 인식 결과에 대한 근거나 설명을 제공해주지 못한다. 이 연구는 표정 인식의 근거로서 Facial Action Coding Unit(AUs)을 사용하기 위해서 CK+ Dataset을 사용하여 표정 인식을 학습한 Convolutional Neural Network(CNN) 모델이 추출한 특징들을 t-distributed stochastic neighbor embedding(t-SNE)을 사용하여 시각화한 뒤, 인식된 표정과 AUs 사이의 분포의 연관성을 확인하는 연구이다.

Human and Robot Tracking Using Histogram of Oriented Gradient Feature

  • Lee, Jeong-eom;Yi, Chong-ho;Kim, Dong-won
    • Journal of Platform Technology
    • /
    • 제6권4호
    • /
    • pp.18-25
    • /
    • 2018
  • This paper describes a real-time human and robot tracking method in Intelligent Space with multi-camera networks. The proposed method detects candidates for humans and robots by using the histogram of oriented gradients (HOG) feature in an image. To classify humans and robots from the candidates in real time, we apply cascaded structure to constructing a strong classifier which consists of many weak classifiers as follows: a linear support vector machine (SVM) and a radial-basis function (RBF) SVM. By using the multiple view geometry, the method estimates the 3D position of humans and robots from their 2D coordinates on image coordinate system, and tracks their positions by using stochastic approach. To test the performance of the method, humans and robots are asked to move according to given rectangular and circular paths. Experimental results show that the proposed method is able to reduce the localization error and be good for a practical application of human-centered services in the Intelligent Space.

Hyper-parameter Optimization for Monte Carlo Tree Search using Self-play

  • Lee, Jin-Seon;Oh, Il-Seok
    • 스마트미디어저널
    • /
    • 제9권4호
    • /
    • pp.36-43
    • /
    • 2020
  • The Monte Carlo tree search (MCTS) is a popular method for implementing an intelligent game program. It has several hyper-parameters that require an optimization for showing the best performance. Due to the stochastic nature of the MCTS, the hyper-parameter optimization is difficult to solve. This paper uses the self-playing capability of the MCTS-based game program for optimizing the hyper-parameters. It seeks a winner path over the hyper-parameter space while performing the self-play. The top-q longest winners in the winner path compete for the final winner. The experiment using the 15-15-5 game (Omok in Korean name) showed a promising result.