• Title/Summary/Keyword: Stochastic Frontier

Search Result 85, Processing Time 0.017 seconds

An Analysis of Relationship between Market Structure and Efficiency in Agricultural Products Wholesale Market (농산물도매시장의 시장구조와 효율성 간의 관계분석)

  • Kim, Hyo-Mi;Kim, Yoon-Doo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.238-245
    • /
    • 2020
  • The objective of this study was to analyze the market structure of the Garak Agricultural Products Wholesale Market, which has the greatest influence among agricultural products wholesale markets and plays a key role in domestic agricultural products distribution. In addition, through analysis of the management efficiency of the wholesale market corporation, which is a major distributor of the Garak Market, the connection relationship between the market structure of the Garak Market and the management efficiency of the wholesale market corporation was able to be identified. From 2007 to 2018, it was found that the market structure of Garak Market was a monopoly. In addition, the average production efficiency of the five wholesale market corporations was 0.95, indicating that the wholesale market corporation in Garak Market has an efficient production structure with high output compared to input. Therefore, in order to activate the agricultural products wholesale market and protect the rights of producers and consumers based on the analysis results, it is necessary to implement a policy that can establish a competition system among agricultural products wholesale market distributors.

Competitiveness and Export Performance in Korean Manufacturing Enterprises : Focusing on the Comparison of Conglomerates and SMEs (국내 제조기업의 경쟁력과 수출: 대기업과 중소기업의 비교를 중심으로)

  • Lee, Dong-Joo
    • Korea Trade Review
    • /
    • v.43 no.3
    • /
    • pp.1-26
    • /
    • 2018
  • This study estimates the technical efficiency and total factor productivity(TFP) of and analyzes the relationship between TFP and exports for Korean manufacturing companies from 2000 to 2016. Specially, TFP is decomposed into Technical Change(TC), Technical Efficiency Change (TEC), and Sale Effect(SE), and compared between large and small enterprises. First, in the case of technical efficiency, the Korean economy has been very vulnerable to external shocks, such as the sharp decline following the 2008 financial crisis. The efficiency of the electronics, automobile, and machinery sectors is low and needs to be improved. In addition, the technological efficiency of large enterprises is higher than that of SMEs in most manufacturing sub-sectors except for non-ferrous metals. In the case of TFP, most changes are due to TC, and the effective combination of labor, capital and the effect of scale have little effect, suggesting that improvement of internal structure is urgent. In addition, volatility due to the impact of the financial crisis in 2008 was much larger in SMEs than in large companies, so external economic impacts are more greater for SMEs than large enterprises. The relationship between TFP decomposition factors and exports shows that TC has a positive effect only on exports of SMEs. Therefore, in order to increase exports, in the case of SMEs, R&D support to promote technological development is needed. In the case of large companies, it is necessary to establish differentiated strategies for each export market, competitor company, and item to link efficiency and scale effect of exports.

  • PDF

Evaluation of the operational efficiency of major coastal ports in China based on the PCA-DEA model (PCA-DEA 모델을 기반으로 한 중국 주요연안 항만의 운영 효율성 평가)

  • Haiqing Zhang;Hyangsook Lee
    • Journal of Korea Port Economic Association
    • /
    • v.40 no.1
    • /
    • pp.87-118
    • /
    • 2024
  • Coastal ports play an essential role in developing a country and a city. Port efficiency is an important factor affecting port trade, and the importance of port efficiency for port performance has been recognized in previous literature. DEA (Data Envelopment Analysis) and SFA (Stochastic Frontier Analysis) are widely used in this field of research. However, these two methods are limited in selecting input and output variables. In addition, the literature studies on Chinese coastal ports mainly focus on the study of port clusters in local areas, which lacks a holistic approach and generally lacks up-to-date data. Therefore, to fill the gap in this area of research, this paper introduces a model combining principal component analysis and data envelopment analysis to analyze the operational efficiency of the top 17 coastal ports in China in terms of throughput based on the most recent data available in 2021. This paper identifies container throughput as the output variable, and 13 second indicators are selected as input variables from four primary indicators: land, capital, labor, and infrastructure. Four principal components were selected from 13 second indicators using PCA.After that, DEA (BBC) and DEA (CCR) were used to analyze the 17 ports, among which five were Shanghai, Ningbo-Zhoushan, Guangzhou, Xiamen, and Dongguan, respectively, DEA efficient, and the remaining 12 ports were non-DEA efficient. Finally, improvement directions for each port are derived, and brief suggestions are made. This paper provides some reference value for developing and constructing coastal ports in China.

Technical Inefficiency in Korea's Manufacturing Industries (한국(韓國) 제조업(製造業)의 기술적(技術的) 효율성(效率性) : 산업별(産業別) 기술적(技術的) 효율성(效率性)의 추정(推定))

  • Yoo, Seong-min;Lee, In-chan
    • KDI Journal of Economic Policy
    • /
    • v.12 no.2
    • /
    • pp.51-79
    • /
    • 1990
  • Research on technical efficiency, an important dimension of market performance, had received little attention until recently by most industrial organization empiricists, the reason being that traditional microeconomic theory simply assumed away any form of inefficiency in production. Recently, however, an increasing number of research efforts have been conducted to answer questions such as: To what extent do technical ineffciencies exist in the production activities of firms and plants? What are the factors accounting for the level of inefficiency found and those explaining the interindustry difference in technical inefficiency? Are there any significant international differences in the levels of technical efficiency and, if so, how can we reconcile these results with the observed pattern of international trade, etc? As the first in a series of studies on the technical efficiency of Korea's manufacturing industries, this paper attempts to answer some of these questions. Since the estimation of technical efficiency requires the use of plant-level data for each of the five-digit KSIC industries available from the Census of Manufactures, one may consture the findings of this paper as empirical evidence of technical efficiency in Korea's manufacturing industries at the most disaggregated level. We start by clarifying the relationship among the various concepts of efficiency-allocative effciency, factor-price efficiency, technical efficiency, Leibenstein's X-efficiency, and scale efficiency. It then becomes clear that unless certain ceteris paribus assumptions are satisfied, our estimates of technical inefficiency are in fact related to factor price inefficiency as well. The empirical model employed is, what is called, a stochastic frontier production function which divides the stochastic term into two different components-one with a symmetric distribution for pure white noise and the other for technical inefficiency with an asymmetric distribution. A translog production function is assumed for the functional relationship between inputs and output, and was estimated by the corrected ordinary least squares method. The second and third sample moments of the regression residuals are then used to yield estimates of four different types of measures for technical (in) efficiency. The entire range of manufacturing industries can be divided into two groups, depending on whether or not the distribution of estimated regression residuals allows a successful estimation of technical efficiency. The regression equation employing value added as the dependent variable gives a greater number of "successful" industries than the one using gross output. The correlation among estimates of the different measures of efficiency appears to be high, while the estimates of efficiency based on different regression equations seem almost uncorrelated. Thus, in the subsequent analysis of the determinants of interindustry variations in technical efficiency, the choice of the regression equation in the previous stage will affect the outcome significantly.

  • PDF

Impacts of R&D and Smallness of Scale on the Total Factor Productivity by Industry (R&D와 규모의 영세성이 산업별 총요소생산성에 미치는 영향)

  • Kim, Jung-Hwan;Lee, Dong-Ki;Lee, Bu-Hyung;Joo, Won
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.2 no.4
    • /
    • pp.71-102
    • /
    • 2007
  • There were many comprehensive analyses conducted within the existing research activities wherein factors affecting technology progress including investment in R&D vis-${\Box}$-vis their influences act as the determinants of TFP. Note, however, that there were few comprehensive analysis in the industrial research performed regarding the impact of the economy of scale as it affects TFP; most of these research studies dealt with the analysis of the non -parametric Malmquist productivity index or used the stochastic frontier production function models. No comprehensive analysis on the impacts of individual independent variables affecting TFP was performed. Therefore, this study obtained the TFP increase rate of each industry by analyzing the factors of the existing growth accounting equation and comprehensively analyzed the TFP determinants by constructing a comprehensive analysis model considering the investment in R&D and economy of scale (smallness by industry) as the influencers of TFP by industry. First, for the TFP increase rate of the 15 industries as a whole, the annual average increase rate for 1993${\sim}$ 1997 was approximately 3.8% only; during 1999${\sim}$ 2000 following the foreign exchange crisis, however, the annual increase rate rose to approximately 7.8%. By industry, the annual average increase rate of TFP between 1993 and 2000 stood at 11.6%, the highest in the electrical and electronic equipment manufacturing business and IT manufacturing sector. In contrast, a -0.4% increase rate was recorded in the furniture and other product manufacturing sectors. In the case of the service industry, the TFP increase rate was 7.3% in the transportation, warehousing, and communication sectors. This is much higher than the 2.9% posted in the electricity, water, and gas sectors and -3.7% recorded in the wholesale, food, and hotel businesses. The results of the comprehensive analysis conducted on the determinants of TFP showed that the correlations between R&D and TFP in general were positive (+) correlations whose significance has yet to be validated; in the model where the self-employed and unpaid family workers were used as proxy variables indicating the smallness of industry out of the total number of workers, however, significant negative (-) correlations were noted. On the other hand, the estimation factors of variables surrogating the smallness of scale in each industry showed that a consistently high "smallness of scale" in an industry means a decrease in the increase rate of TFP in the same industry.

  • PDF