Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.6
/
pp.238-245
/
2020
The objective of this study was to analyze the market structure of the Garak Agricultural Products Wholesale Market, which has the greatest influence among agricultural products wholesale markets and plays a key role in domestic agricultural products distribution. In addition, through analysis of the management efficiency of the wholesale market corporation, which is a major distributor of the Garak Market, the connection relationship between the market structure of the Garak Market and the management efficiency of the wholesale market corporation was able to be identified. From 2007 to 2018, it was found that the market structure of Garak Market was a monopoly. In addition, the average production efficiency of the five wholesale market corporations was 0.95, indicating that the wholesale market corporation in Garak Market has an efficient production structure with high output compared to input. Therefore, in order to activate the agricultural products wholesale market and protect the rights of producers and consumers based on the analysis results, it is necessary to implement a policy that can establish a competition system among agricultural products wholesale market distributors.
This study estimates the technical efficiency and total factor productivity(TFP) of and analyzes the relationship between TFP and exports for Korean manufacturing companies from 2000 to 2016. Specially, TFP is decomposed into Technical Change(TC), Technical Efficiency Change (TEC), and Sale Effect(SE), and compared between large and small enterprises. First, in the case of technical efficiency, the Korean economy has been very vulnerable to external shocks, such as the sharp decline following the 2008 financial crisis. The efficiency of the electronics, automobile, and machinery sectors is low and needs to be improved. In addition, the technological efficiency of large enterprises is higher than that of SMEs in most manufacturing sub-sectors except for non-ferrous metals. In the case of TFP, most changes are due to TC, and the effective combination of labor, capital and the effect of scale have little effect, suggesting that improvement of internal structure is urgent. In addition, volatility due to the impact of the financial crisis in 2008 was much larger in SMEs than in large companies, so external economic impacts are more greater for SMEs than large enterprises. The relationship between TFP decomposition factors and exports shows that TC has a positive effect only on exports of SMEs. Therefore, in order to increase exports, in the case of SMEs, R&D support to promote technological development is needed. In the case of large companies, it is necessary to establish differentiated strategies for each export market, competitor company, and item to link efficiency and scale effect of exports.
Coastal ports play an essential role in developing a country and a city. Port efficiency is an important factor affecting port trade, and the importance of port efficiency for port performance has been recognized in previous literature. DEA (Data Envelopment Analysis) and SFA (Stochastic Frontier Analysis) are widely used in this field of research. However, these two methods are limited in selecting input and output variables. In addition, the literature studies on Chinese coastal ports mainly focus on the study of port clusters in local areas, which lacks a holistic approach and generally lacks up-to-date data. Therefore, to fill the gap in this area of research, this paper introduces a model combining principal component analysis and data envelopment analysis to analyze the operational efficiency of the top 17 coastal ports in China in terms of throughput based on the most recent data available in 2021. This paper identifies container throughput as the output variable, and 13 second indicators are selected as input variables from four primary indicators: land, capital, labor, and infrastructure. Four principal components were selected from 13 second indicators using PCA.After that, DEA (BBC) and DEA (CCR) were used to analyze the 17 ports, among which five were Shanghai, Ningbo-Zhoushan, Guangzhou, Xiamen, and Dongguan, respectively, DEA efficient, and the remaining 12 ports were non-DEA efficient. Finally, improvement directions for each port are derived, and brief suggestions are made. This paper provides some reference value for developing and constructing coastal ports in China.
Research on technical efficiency, an important dimension of market performance, had received little attention until recently by most industrial organization empiricists, the reason being that traditional microeconomic theory simply assumed away any form of inefficiency in production. Recently, however, an increasing number of research efforts have been conducted to answer questions such as: To what extent do technical ineffciencies exist in the production activities of firms and plants? What are the factors accounting for the level of inefficiency found and those explaining the interindustry difference in technical inefficiency? Are there any significant international differences in the levels of technical efficiency and, if so, how can we reconcile these results with the observed pattern of international trade, etc? As the first in a series of studies on the technical efficiency of Korea's manufacturing industries, this paper attempts to answer some of these questions. Since the estimation of technical efficiency requires the use of plant-level data for each of the five-digit KSIC industries available from the Census of Manufactures, one may consture the findings of this paper as empirical evidence of technical efficiency in Korea's manufacturing industries at the most disaggregated level. We start by clarifying the relationship among the various concepts of efficiency-allocative effciency, factor-price efficiency, technical efficiency, Leibenstein's X-efficiency, and scale efficiency. It then becomes clear that unless certain ceteris paribus assumptions are satisfied, our estimates of technical inefficiency are in fact related to factor price inefficiency as well. The empirical model employed is, what is called, a stochastic frontier production function which divides the stochastic term into two different components-one with a symmetric distribution for pure white noise and the other for technical inefficiency with an asymmetric distribution. A translog production function is assumed for the functional relationship between inputs and output, and was estimated by the corrected ordinary least squares method. The second and third sample moments of the regression residuals are then used to yield estimates of four different types of measures for technical (in) efficiency. The entire range of manufacturing industries can be divided into two groups, depending on whether or not the distribution of estimated regression residuals allows a successful estimation of technical efficiency. The regression equation employing value added as the dependent variable gives a greater number of "successful" industries than the one using gross output. The correlation among estimates of the different measures of efficiency appears to be high, while the estimates of efficiency based on different regression equations seem almost uncorrelated. Thus, in the subsequent analysis of the determinants of interindustry variations in technical efficiency, the choice of the regression equation in the previous stage will affect the outcome significantly.
Kim, Jung-Hwan;Lee, Dong-Ki;Lee, Bu-Hyung;Joo, Won
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.2
no.4
/
pp.71-102
/
2007
There were many comprehensive analyses conducted within the existing research activities wherein factors affecting technology progress including investment in R&D vis-${\Box}$-vis their influences act as the determinants of TFP. Note, however, that there were few comprehensive analysis in the industrial research performed regarding the impact of the economy of scale as it affects TFP; most of these research studies dealt with the analysis of the non -parametric Malmquist productivity index or used the stochastic frontier production function models. No comprehensive analysis on the impacts of individual independent variables affecting TFP was performed. Therefore, this study obtained the TFP increase rate of each industry by analyzing the factors of the existing growth accounting equation and comprehensively analyzed the TFP determinants by constructing a comprehensive analysis model considering the investment in R&D and economy of scale (smallness by industry) as the influencers of TFP by industry. First, for the TFP increase rate of the 15 industries as a whole, the annual average increase rate for 1993${\sim}$ 1997 was approximately 3.8% only; during 1999${\sim}$ 2000 following the foreign exchange crisis, however, the annual increase rate rose to approximately 7.8%. By industry, the annual average increase rate of TFP between 1993 and 2000 stood at 11.6%, the highest in the electrical and electronic equipment manufacturing business and IT manufacturing sector. In contrast, a -0.4% increase rate was recorded in the furniture and other product manufacturing sectors. In the case of the service industry, the TFP increase rate was 7.3% in the transportation, warehousing, and communication sectors. This is much higher than the 2.9% posted in the electricity, water, and gas sectors and -3.7% recorded in the wholesale, food, and hotel businesses. The results of the comprehensive analysis conducted on the determinants of TFP showed that the correlations between R&D and TFP in general were positive (+) correlations whose significance has yet to be validated; in the model where the self-employed and unpaid family workers were used as proxy variables indicating the smallness of industry out of the total number of workers, however, significant negative (-) correlations were noted. On the other hand, the estimation factors of variables surrogating the smallness of scale in each industry showed that a consistently high "smallness of scale" in an industry means a decrease in the increase rate of TFP in the same industry.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.