• 제목/요약/키워드: Stochastic Finite element

검색결과 181건 처리시간 0.027초

불균질지층내 지하수 유동의 확률론적 분석 : 무작위성 분포 재생을 통한 가상적 수리시험 (Stochastic Simulation of Groundwater Flow in Heterogeneous Formations: a Virtual Setting via Realizations of Random Field)

  • Lee, Kang-Kun
    • 대한지하수환경학회지
    • /
    • 제1권2호
    • /
    • pp.90-99
    • /
    • 1994
  • 수리전도도의 대수값이 정규 분포를 갖고 또 공간적 상관관계를 갖는 무작위 변수라는 가정하에 지하수 유동영역 안에서 불균질한 수리전도도를 발생시켰다. 발생된 수리전도도의 거리에 따른 공분산값의 변화는 이론적으로 제시되는 변화와 잘 일치된다. 지하수위와 수리전도도는 확률론적으로 작용하는 무작위 변수들로 보고 수리 전도도와 지하수위에 대한 확률 통계적 분석을 위해 몬테카를로 시뮬레이션 방법과 유한요소법을 이용하였다. 지하수위와 수리전도도의 분산값은 지하수 유동영역의 점원, 경계조건, 수위구배, 흐름방향 및 상관 거리에 따라 특징적인 분포를 보인다. 특히 수위와 수리전도도간의 공분산값이 음수인 영역은 유동 시스템의 변화에 영향을 거의 받지 않는 영역으로 볼 수 있어서 영향권의 도출과 관계시킬 수 있다.

  • PDF

A comparative study of three collocation point methods for odd order stochastic response surface method

  • Li, Dian-Qing;Jiang, Shui-Hua;Cheng, Yong-Gang;Zhou, Chuang-Bing
    • Structural Engineering and Mechanics
    • /
    • 제45권5호
    • /
    • pp.595-611
    • /
    • 2013
  • This paper aims to compare three collocation point methods associated with the odd order stochastic response surface method (SRSM) in a systematical and quantitative way. The SRSM with the Hermite polynomial chaos is briefly introduced first. Then, three collocation point methods, namely the point method, the root method and the without origin method underlying the odd order SRSMs are highlighted. Three examples are presented to demonstrate the accuracy and efficiency of the three methods. The results indicate that the condition that the Hermite polynomial information matrix evaluated at the collocation points has a full rank should be satisfied to yield reliability results with a sufficient accuracy. The point method and the without origin method are much more efficient than the root method, especially for the reliability problems involving a large number of random variables or requiring complex finite element analysis. The without origin method can also produce sufficiently accurate reliability results in comparison with the point and root methods. Therefore, the origin often used as a collocation point is not absolutely necessary. The odd order SRSMs with the point method and the without origin method are recommended for the reliability analysis due to their computational accuracy and efficiency. The order of SRSM has a significant influence on the results associated with the three collocation point methods. For normal random variables, the SRSM with an order equaling or exceeding the order of a performance function can produce reliability results with a sufficient accuracy. The order of SRSM should significantly exceed the order of the performance function involving strongly non-normal random variables.

직교이방성 복합적층구조의 거동: 포아송비의 임의성에 의한 영향 (Behavior of Orthotropic Composite Plate Due to Random Poisson's Ratio)

  • 노혁천
    • 한국전산구조공학회논문집
    • /
    • 제22권6호
    • /
    • pp.627-637
    • /
    • 2009
  • 복합재료는 재료적, 역학적으로 뛰어난 특성을 가진 재료로서 엔지니어링분야의 많은 부분에 적용되고 있다. 특히 무게 대비 강성비가 높은 특성을 가지고 있으며 다양한 형상에 대한 성형성도 뛰어나다. 그러나 재료의 특성상 두 가지 재료를 조합하여 제작하는 복잡한 과정은 재료상수에 높은 임의성을 야기할 가능성이 있다. 본 연구에서는 재료상수 중 포아송비의 공간적 임의성을 고려한 추계론적 유한요소해석 정식화를 제시한다. 직교이방성 복합적층구조의 두 재료축에 대한 상호관계를 적용하여 두 재료축방향의 포아송비를 하나의 대표값으로 나타내었고, 이를 합력-변형률관계에 적용하였다. 이를 통하여 합력-변형률관계를 포아송비의 변동항의 수학적 표현인 추계장함수의 차수에 따라 분해된 형태로 유도하였고, 이를 정식화에 적용하여 응답분산계수를 제시하였다. 제시한 응답분산계수는 몬테카를로 해석의 결과와 비교하였다.

암의 비대칭적 성장, 혈관생성 및 혈류역학에 대한 수치적 연구 (Numerical Research about Asymmetric Growth of Cancer, Angiogenesis and Hemodynamics)

  • 김유석;심은보
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2951-2954
    • /
    • 2007
  • Tumor hemodynamics in vascular state is numerically simulated using pressure node solution. The tumor angiogenesis pattern in our previous study is used for the geometry of vessel networks. For tumor angiogenesis, the equation that governed angiogenesis comprises a tumor angiogenesis factor (TAF) conservation equation in time and space, which is solved numerically using the Galerkin finite element method. A stochastic process model is used to simulate vessel formation and vessel. In this study, we use a two-dimensional model with planar vessel structure. Hemodynamics in vessel is assumed as incompressible steady flow with Newtonian fluid properties. In parent vessel, arterial pressure is assigned as a boundary condition whereas a constant terminal pressure is specified in tumor inside. Kirchhoff's law is applied to each pressure node to simulate the pressure distribution in vessel networks. Transient pressure distribution along with angiogenesis pattern is presented to investigate the effect of tumor growth in tumor hemodynamics.

  • PDF

재료 물성치의 불확실성에 의한 복합적층판 변위의 확률적 거동 (Probabilistic Behavior of Laminated Composite Plates with Random Material Properties)

  • 노혁천
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.27-32
    • /
    • 2008
  • The laminated composite materials have been applied to various mechanical structures due to their high performance to weight ratios. In this study, we suggest a stochastic finite element scheme for the probabilistic analysis of the composite laminated plates. The composite materials consist of two different materials which constitute the matrix and fiber. The material properties in the major and minor directions are determined depending on the volume fraction of these two materials. In this study, the elastic modulus and shear modulus are considered as random and the effect of these random properties on the behavior of the composite plate is investigated. We adopt the weighted integral scheme in the formulation, which has been recognized as the most accurate method in the statistical methodologies. For verification of the proposed scheme, Monte Carlo analysis is also performed for the comparison with the proposed scheme.

  • PDF

확률함수를 이용한 비균질 Ti-6Al-4V 합금의 변형 및 파손해석 (Deformation and Failure Analysis of Heterogeneous Microstructures of Ti-6Al-4V Alloy using Probability Functions)

  • 김태원;고은영
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.685-692
    • /
    • 2004
  • A stochastic approach has been presented for superplastic deformation of Ti-6Al-4V alloy, and probability functions are used to model the heterogeneous phase distributions. The experimentally observed spatial correlation functions are developed, and microstructural evolutions together with superplastic deformation behavior have been investigated by means of the two-point and three-point probability functions. The results have shown that the probability varies approximately linearly with separation distance, and deformation enhanced probability changes during the process. The stress-strain behavior with the evolutions of probability function can be correctly predicted by the model. The finite element implementation using Monte Carlo simulation associated with reconstructed microstructures shows that better agreement with experimental data of failure strain on the test specimen.

불규칙 진동을 받는 복합 적층보의 응력 및 파괴해석 (Random Vibration Analysis of Composite Laminated Beams)

  • 전용선;강주원
    • 한국공간구조학회논문집
    • /
    • 제2권4호
    • /
    • pp.29-36
    • /
    • 2002
  • The responses of composite laminated beams modeled with finite element and excited by stochastic loading are studied. The cantilevered laminated beam having a 5 ply configuration is considered. The beam is 1m long, 0.1m wide, and 0.02m thick, yielding a length to thickness ratio of L/h=50. The laminated beams was assumed to be made of Born Epoxy. The four nodes at the free end of the cantilever were loaded with identical zero-mean white noise excitations. Stress and failure analysis loaded with identical zero-mean white noise excitations is carried out. Along with the obtained results, comparison and discussion are presented for the cases of symmetric-ply, antisymmetric-ply, angle-ply, and cross-ply laminated beams.

  • PDF

A new adaptive mesh refinement strategy based on a probabilistic error estimation

  • Ziaei, H.;Moslemi, H.
    • Structural Engineering and Mechanics
    • /
    • 제74권4호
    • /
    • pp.547-557
    • /
    • 2020
  • In this paper, an automatic adaptive mesh refinement procedure is presented for two-dimensional problems on the basis of a new probabilistic error estimator. First-order perturbation theory is employed to determine the lower and upper bounds of the structural displacements and stresses considering uncertainties in geometric sizes, material properties and loading conditions. A new probabilistic error estimator is proposed to reduce the mesh dependency of the responses dispersion. The suggested error estimator neglects the refinement at the critical points with stress concentration. Therefore, the proposed strategy is combined with the classic adaptive mesh refinement to achieve an optimal mesh refined properly in regions with either high gradients or high dispersion of the responses. Several numerical examples are illustrated to demonstrate the efficiency, accuracy and robustness of the proposed computational algorithm and the results are compared with the classic adaptive mesh refinement strategy described in the literature.

A dynamical stochastic finite element method based on the moment equation approach for the analysis of linear and nonlinear uncertain structures

  • Falsone, Giovanni;Ferro, Gabriele
    • Structural Engineering and Mechanics
    • /
    • 제23권6호
    • /
    • pp.599-613
    • /
    • 2006
  • A method for the dynamical analysis of FE discretized uncertain linear and nonlinear structures is presented. This method is based on the moment equation approach, for which the differential equations governing the response first and second-order statistical moments must be solved. It is shown that they require the cross-moments between the response and the random variables characterizing the structural uncertainties, whose governing equations determine an infinite hierarchy. As a consequence, a closure scheme must be applied even if the structure is linear. In this sense the proposed approach is approximated even for the linear system. For nonlinear systems the closure schemes are also necessary in order to treat the nonlinearities. The complete set of equations obtained by this procedure is shown to be linear if the structure is linear. The application of this procedure to some simple examples has shown its high level of accuracy, if compared with other classical approaches, such as the perturbation method, even for low levels of closures.

군집지능과 모델개선기법을 이용한 구조물의 결함탐지 (Structural Damage Detection Using Swarm Intelligence and Model Updating Technique)

  • 최종헌;고봉환
    • 한국소음진동공학회논문집
    • /
    • 제19권9호
    • /
    • pp.884-891
    • /
    • 2009
  • This study investigates some of swarm intelligence algorithms to tackle a traditional damage detection problem having stiffness degradation or damage in mechanical structures. Particle swarm(PSO) and ant colony optimization(ACO) methods have been exploited for localizing and estimating the location and extent damages in a structure. Both PSO and ACO are population-based, stochastic algorithms that have been developed from the underlying concept of swarm intelligence and search heuristic. A finite element (FE) model updating is implemented to minimize the difference in a set of natural frequencies between measured and baseline vibration data. Stiffness loss of certain elements is considered to simulate structural damages in the FE model. It is numerically shown that PSO and ACO algorithms successfully completed the optimization process of model updating in locating unknown damages in a truss structure.