• 제목/요약/키워드: Stochastic Equivalent Linearization

검색결과 20건 처리시간 0.022초

통계적 부분선형화 방법을 이용한 선체의 불규칙 횡동요 운동의 해석 (Analysis of Random Ship Rolling Using Partial Stochastic Linearization)

  • 김동수;이원경
    • 대한조선학회논문집
    • /
    • 제32권1호
    • /
    • pp.37-41
    • /
    • 1995
  • 불규칙 해상에서의 선체의 횡동요운동을 해석하기 위하여 통계적 부분선형화 방법을 사용하였다. 선형 1자유도계인 횡동요 운동 모델에 2차의 비선형 감쇠항과 3차 및 5차, 7차, 9차, 11차의 비선형 복원모멘트를 추가하였으며 불규칙 기진모멘트는 가우스 백색잡음으로 가정하였다. 이 해석 결과를 등가선형화 방법으로 구한결과와 비교한 결과 부분선형화 방법이 반드시 더 정확한 결과를 주는 것은 아니란 점을 확인하였다.

  • PDF

불규칙 교란을 받는 비행체에 장착된 비선형 시스템의 난진동 해석 (Analysis on random vibration of a non-linear system in flying vehicle due to stochastic disturbances)

  • 구제선
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1426-1435
    • /
    • 1990
  • 본 연구에서는 확률론적 등가선형화 기법을 사용하여 비선형 랜덤 시스템을 선형화하였다.또 이 선형화된 시스템을 최근에 새로이 제안된 방법을 적용하여 비 백색잡음형태의 랜덤 가진을 받을 때 그 거동을 구하였다.

A stochastic adaptive pushover procedure for seismic assessment of buildings

  • Jafari, Mohammad;Soltani, Masoud
    • Earthquakes and Structures
    • /
    • 제14권5호
    • /
    • pp.477-492
    • /
    • 2018
  • Recently, the adaptive nonlinear static analysis method has been widely used in the field of performance based earthquake engineering. However, the proposed methods are almost deterministic and cannot directly consider the seismic record uncertainties. In the current study an innovative Stochastic Adaptive Pushover Analysis, called "SAPA", based on equivalent hysteresis system responses is developed to consider the earthquake record to record uncertainties. The methodology offers a direct stochastic analysis which estimates the seismic demands of the structure in a probabilistic manner. In this procedure by using a stochastic linearization technique in each step, the equivalent hysteresis system is analyzed and the probabilistic characteristics of the result are obtained by which the lateral force pattern is extracted and the actual structure is pushed. To compare the results, three different types of analysis have been considered; conventional pushover methods, incremental dynamic analysis, IDA, and the SAPA method. The result shows an admirable accuracy in predicting the structure responses.

마찰감쇠기-가새 시스템의 등가선형화 기법에 관한 연구 (Equivalent linearization of a Friction Damper and Brace System)

  • 민경원;박지훈;김대현;김형섭;문병욱;강상훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.750-753
    • /
    • 2005
  • An equivalent linearization technique based on Rayleigh peak distribution for friction damper and brace system (FDBS) under stochastic excitation is proposed. For verification, shaking table test of a small scale 3-story building model with the FDBS is conducted for various slip moment levels. Using experimental result, equivalent linearization of the FDBS is conducted based on Rayleigh peak distribution, which is compared with measured peak distribution. For comparative study, model updating technique is applied based on identified modal properties. Finally, complex modal analysis and time history analysis for the obtained equivalent linear systems are conducted and compared with experimental result

  • PDF

비선형 불규칙 진동 보의 등가에너지법에 의한 선형화 (Linearization of Nonlinear Random Vibration Beam by Equivalent Energy Method)

  • 이신영
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.71-76
    • /
    • 2008
  • Nonlinear dynamic system under random excitation was analyzed by using stochastic method. A linearization method was used in order to linearize non-linear structural characteristics but the parametric excitation was used as it was given. An equivalent energy method which equalizes the expectation value of energy of the original nonlinear system and that of quasi-linearized system was proposed. Ito's differential rule was applied to obtain steady state moments. Quasi-linearization coefficients can be obtained the iterative calculation of linearization scheme and steady state moments. Monte Carlo simulation was used to verify the results of the proposed method. Nonlinear vibration of a slender beam was analyzed in this research. The analysis results were compared with Monte Carlo simulation result and showed good agreement. As the spectral density of the given excitation increased, the analysis results showed the better agreement with Monte Carlo simulation.

Investigation of effectiveness of double concave friction pendulum bearings

  • Ates, Sevket
    • Computers and Concrete
    • /
    • 제9권3호
    • /
    • pp.195-213
    • /
    • 2012
  • This paper presents the investigation of the stochastic responses of seismically isolated bridges subjected to spatially varying earthquake ground motions including incoherence, wave-passage and site-response effects. The incoherence effect is examined by considering Harichandran and Vanmarcke coherency model. The effect of the wave-passage is dealt with various wave velocities in the response analysis. Homogeneous firm, medium and soft soil conditions are selected for considering the site-response effect where the bridge supports are constructed. The ground motion is described by filtered white noise and applied to each support points. For seismic isolation of the bridge, single and double concave friction pendulum bearings are used. Due to presence of friction on the concave surfaces of the isolation systems, the equation of motion of is non-linear. The non-linear equation of motion is solved by using equivalent linearization technique of non-linear stochastic analyses. Solutions obtained from the stochastic analyses of non-isolated and isolated bridges to spatially varying earthquake ground motions compared with each other for the special cases of the ground motion model. It is concluded that friction pendulum systems having single and double concave surfaces have important effects on the stochastic responses of bridges to spatially varying earthquake ground motions.

응답의 피크분포에 기초한 마찰감쇠기의 등가선형화 (Equivalent linearization of friction damper and brace system based on peak distribution)

  • 박지훈;민경원;문병욱
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.437-444
    • /
    • 2005
  • An equivalent linearization technique based on Rayleigh peak distribution for friction damper and brace system (FDBS) under stochastic excitation is proposed. For verification, shaking table test of a small scale 3-story building model with the FDBS is conducted for various slip moment levels. Using experimental result, equivalent linearization of the FDBS is conducted based on Rayleigh peak distribution, which is compared with measured peak distribution. For comparative study, model updating technique is applied based on identified modal properties. Finally, complex modal analysis and time history analysis for the obtained equivalent linear systems are conducted and compared with experimental result.

  • PDF

Stochastic vibration response of a sandwich beam with nonlinear adjustable visco-elastomer core and supported mass

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Structural Engineering and Mechanics
    • /
    • 제64권2호
    • /
    • pp.259-270
    • /
    • 2017
  • The stochastic vibration response of the sandwich beam with the nonlinear adjustable visco-elastomer core and supported mass under stochastic support motion excitations is studied. The nonlinear dynamic properties of the visco-elastomer core are considered. The nonlinear partial differential equations for the horizontal and vertical coupling motions of the sandwich beam are derived. An analytical solution method for the stochastic vibration response of the nonlinear sandwich beam is developed. The nonlinear partial differential equations are converted into the nonlinear ordinary differential equations representing the nonlinear stochastic multi-degree-of-freedom system by using the Galerkin method. The nonlinear stochastic system is converted further into the equivalent quasi-linear system by using the statistic linearization method. The frequency-response function, response spectral density and mean square response expressions of the nonlinear sandwich beam are obtained. Numerical results are given to illustrate new stochastic vibration response characteristics and response reduction capability of the sandwich beam with the nonlinear visco-elastomer core and supported mass under stochastic support motion excitations. The influences of geometric and physical parameters on the stochastic response of the nonlinear sandwich beam are discussed, and the numerical results of the nonlinear sandwich beam are compared with those of the sandwich beam with linear visco-elastomer core.

Hysteretic model of isolator gap damper system and its equivalent linearization for random earthquake response analysis

  • Zhang, Hongmei;Gu, Chen
    • Smart Structures and Systems
    • /
    • 제29권3호
    • /
    • pp.485-498
    • /
    • 2022
  • In near-fault earthquake prone areas, the velocity pulse-like seismic waves often results in excessive horizontal displacement for structures, which may result in severe structural failure during large or near-fault earthquakes. The recently developed isolator-gap damper (IGD) systems provide a solution for the large horizontal displacement of long period base-isolated structures. However, the hysteresis characteristics of the IGD system are significantly different from the traditional hysteretic behavior. At present, the hysteretic behavior is difficult to be reflected in the structural analysis and performance evaluation especially under random earthquake excitations for lacking of effective analysis models which prevent the application of this kind of IGD system. In this paper, we propose a mathematical hysteretic model for the IGD system that presents its nonlinear hysteretic characteristics. The equivalent linearization is conducted on this nonlinear model, which requires the variances of the IGD responses. The covariance matrix for the responses of the structure and the IGD system is obtained for random earthquake excitations represented by the Kanai-Tajimi spectrum by solving the Lyapunov equation. The responses obtained by the equivalent linearization are verified in comparison with the nonlinear responses by the Monte Carlo simulation (MCS) analysis for random earthquake excitations.

랜덤파랑하중에 대한 Guyed Tower의 동적 거동해석 (Dynamic Analysis of Guyed Tower Subjected to Random Waves)

  • 유정선;윤정봉
    • 한국해양공학회지
    • /
    • 제1권1호
    • /
    • pp.57-64
    • /
    • 1987
  • Methods of nonlinear stochastic analysis of guyed towers are studied in this paper. Two different kinds of nonlinearities are considered. They are the nonlinear restoring force from the guying system and the nonlinear hydrodynamic force. Analyses are carried out mainly in the frequency domain using linearization techniques. Two methods for the linearization of the nonlinear stiffness are presented, in which the effects of the steady offset and the oscillating component of the structural motion can be adequately analyzed. those two methods are the equivalent linearization method and the average stiffness method. The linearization of the nonlinear drag force is also carried out considering the effect of steady current as well as oscillatory wave motions. Example analyses are performed for guyed tower in 300m water. Transfer functions and the expected maximum values of the deck displacement and the bending moment near the middle of the tower are calculated. Numerical results show that both of the frequency domain methods presented in this paper predict the responses of the sturcture very reasonably compared with those by the time integration method utilzing the random simulations wave particla motions.

  • PDF