• Title/Summary/Keyword: Stochastic Characteristics

Search Result 406, Processing Time 0.036 seconds

Water Supply Reliability Revaluation For Agricultural Water Supply Pattern Changes Considering Climate Changes (기후변화에 따른 농업용수공급패턴의 변화로 인한 이수안전도변화분석)

  • Choi, Young-Don;Ahn, Jong-Seo;Shin, Hyun-Suk;Cha, Hyung-Sun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.273-277
    • /
    • 2010
  • This research was performed to examine changes in the timing of the growth of crops along with changes in temperatures due tochanges and to analyze the change of water-supply-reliability by adding an analysis of the change of agricultural water supply patterns in the basin area of Miryang dam in Korea. Had-CM3 model from U.K. was the tool adopted for the GCM model, a stochastic, daily-meteorology-generation-model called LARS-WG was alsoused for downscaling and for the climate change scenario (A1B) which represents Korea's circumstances best. First of all, to calculate changes in the timing of the growth of crops during this period, the theory of GDD was applied. Except for the period of transplanting and irrigation, there was no choice but to find the proper accumulated temperature by comparing actual temperature data and the supply pattern of agricultural use due to limited temperature data. As a result, proper temperatures were found for each period. $400^{\circ}C$ for the preparation period of a nursery bed, $704^{\circ}C$ for a nursery bed's period, $1,295^{\circ}C$ for the rice-transplanting period, $1,744^{\circ}C$ for starting irrigation, and $3,972^{\circ}C$ for finishing irrigation. To analyze future agricultural supply patter changes, the A1B scenario of Had-CM3 model was adopted, and then Downscaling was conducted adopting LARS-WG. To conduct a stochastical analysis of LARS-WG, climate scenarios were generated for the periods 2011~2030, 2046~2065, 2080~2099 using the data of precipitation andMax/Min temperatures collected from the Miryang gauging station. Upon reviewing the result of the analysis of accumulated temperatures from 2011~2030, the supply of agricultural water was 10 days earlier, and in the next periods-2046~2065, 2080~2099 it also was 10 days earlier. With these results, it is assumed that the supply of agricultural water should be about 1 month ahead of the existing schedule to meet the proper growth conditions of crops. From the results of the agricultural water supply patterns should be altered, but the reliability of water supply becomes more favorable, which is caused from the high precipitation change. Furthermore, since the unique characteristics of precipitation in Korea, which has high precipitation in the summer, water-supply-reliability has a pattern that the precipitation in September could significantly affect the chances of drought the following winter and spring. It could be more risky to make changes to the constant supply pattern under these conditions due to the high uncertainty of future precipitation. Although, several researches have been conducted concerning climate changes, in the field of water-industry, those researches have been solely dependent on precipitation. Even so, with the high uncertainty of precipitation, it is difficult for it to be reflected in government policy. Therefore, research in the field of water-supply-patterns or evapotranspiration according to the temperature or other diverse effects, which has higher reliability on anticipation, could obtain more reliable results in the future and that could result in water-resource maintenance to be safer and a more advantageous environment.

  • PDF

The Economics Value of Electric Vehicle Demand Resource under the Energy Transition Plan (에너지전환 정책하에 전기차 수요자원의 경제적 가치 분석: 9차 전력수급계획 중심으로)

  • Jeon, Wooyoung;Cho, Sangmin;Cho, Ilhyun
    • Environmental and Resource Economics Review
    • /
    • v.30 no.2
    • /
    • pp.237-268
    • /
    • 2021
  • As variable renewable sources rapidly increase due to the Energy Transition plan, integration cost of renewable sources to the power system is rising sharply. The increase in variable renewable energy reduces the capacity factor of existing traditional power capacity, and this undermines the efficiency of the overall power supply, and demand resources are drawing attention as a solution. In this study, we analyzed how much electric vehicle demand resouces, which has great potential among other demand resources, can reduce power supply costs if it is used as a flexible resource for renewable generation. As a methodology, a stochastic form of power system optimization model that can effectively reflect the volatile characteristics of renewable generation is used to analyze the cost induced by renewable energy and the benefits offered by electric vehicle demand resources. The result shows that virtual power plant-based direct control method has higher benefits than the time-of-use tariff, and the higher the proportion of renewable energy is in the power system, the higher the benefits of electric vehicle demand resources are. The net benefit after considering commission fee for aggregators and battery wear-and-tear costs was estimated as 67% to 85% of monthly average fuel cost under virtual power plant with V2G capability, and this shows that a sufficient incentive for market participation can be offered when a rate system is applied in which these net benefits of demand resources are effectively distributed to consumers.

Numerical Study of SPGD-based Phase Control of Coherent Beam Combining under Various Turbulent Atmospheric Conditions (대기외란에 따른 SPGD 기반 결맞음 빔결합 시스템 위상제어 동작성능 분석)

  • Kim, Hansol;Na, Jeongkyun;Jeong, Yoonchan
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.6
    • /
    • pp.247-258
    • /
    • 2020
  • In this paper, based on a stochastic parallel gradient descent (SPGD) algorithm we study phase control of a coherent-beam-combining system under turbulent atmospheric conditions. Based on the statistical theory of atmospheric turbulence, we carry out the analysis of the phase and wavefront distortion of a laser beam propagating through a turbulent atmospheric medium. We also conduct numerical simulations of a coherent-beam-combining system with 7- and 19-channel laser beams distorted by atmospheric turbulence. Through numerical simulations, we characterize the phase-control characteristics and efficiency of the coherent-beam-combining system under various degrees of atmospheric turbulence. It is verified that the SPGD algorithm is capable of realizing 7-channel coherent beam combining with a beam-combining efficiency of more than 90%, even under the turbulent atmospheric conditions up to cn2 of 10-13 m-2/3. In the case of 19-channel coherent beam combining, it is shown that the same turbulent atmospheric conditions result in a drastic reduction of the beam-combining efficiency down to 60%, due to the elevated impact of the corresponding refractive-index inhomogeneity. In addition, by putting together the number of iterations of the SPGD algorithm required for phase locking under atmospheric turbulence and the time intervals of atmospheric phenomena, which typically are of the order of ㎲, it is estimated that hundreds of MHz to a few GHz of computing bandwidth of SPGD-based phase control may be required for a coherent-beam-combining system to confront such turbulent atmospheric conditions. We expect the results of this paper to be useful for quantitatively analyzing and predicting the effects of atmospheric turbulence on the SPGD-based phase-control performance of a coherent-beam-combining system.

Impacts assessment of Climate changes in North Korea based on RCP climate change scenarios II. Impacts assessment of hydrologic cycle changes in Yalu River (RCP 기후변화시나리오를 이용한 미래 북한지역의 수문순환 변화 영향 평가 II. 압록강유역의 미래 수문순환 변화 영향 평가)

  • Jeung, Se Jin;Kang, Dong Ho;Kim, Byung Sik
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.39-50
    • /
    • 2019
  • This study aims to assess the influence of climate change on the hydrological cycle at a basin level in North Korea. The selected model for this study is MRI-CGCM 3, the one used for the Coupled Model Intercomparison Project Phase 5 (CMIP5). Moreover, this study adopted the Spatial Disaggregation-Quantile Delta Mapping (SDQDM), which is one of the stochastic downscaling techniques, to conduct the bias correction for climate change scenarios. The comparison between the preapplication and postapplication of the SDQDM supported the study's review on the technique's validity. In addition, as this study determined the influence of climate change on the hydrological cycle, it also observed the runoff in North Korea. In predicting such influence, parameters of a runoff model used for the analysis should be optimized. However, North Korea is classified as an ungauged region for its political characteristics, and it was difficult to collect the country's runoff observation data. Hence, the study selected 16 basins with secured high-quality runoff data, and the M-RAT model's optimized parameters were calculated. The study also analyzed the correlation among variables for basin characteristics to consider multicollinearity. Then, based on a phased regression analysis, the study developed an equation to calculate parameters for ungauged basin areas. To verify the equation, the study assumed the Osipcheon River, Namdaecheon Stream, Yongdang Reservoir, and Yonggang Stream as ungauged basin areas and conducted cross-validation. As a result, for all the four basin areas, high efficiency was confirmed with the efficiency coefficients of 0.8 or higher. The study used climate change scenarios and parameters of the estimated runoff model to assess the changes in hydrological cycle processes at a basin level from climate change in the Amnokgang River of North Korea. The results showed that climate change would lead to an increase in precipitation, and the corresponding rise in temperature is predicted to cause elevating evapotranspiration. However, it was found that the storage capacity in the basin decreased. The result of the analysis on flow duration indicated a decrease in flow on the 95th day; an increase in the drought flow during the periods of Future 1 and Future 2; and an increase in both flows for the period of Future 3.

Optimization of Single-stage Mixed Refrigerant LNG Process Considering Inherent Explosion Risks (잠재적 폭발 위험성을 고려한 단단 혼합냉매 LNG 공정의 설계 변수 최적화)

  • Kim, Ik Hyun;Dan, Seungkyu;Cho, Seonghyun;Lee, Gibaek;Yoon, En Sup
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.467-474
    • /
    • 2014
  • Preliminary design in chemical process furnishes economic feasibility through calculation of both mass balance and energy balance and makes it possible to produce a desired product under the given conditions. Through this design stage, the process possesses unchangeable characteristics, since the materials, reactions, unit configuration, and operating conditions were determined. Unique characteristics could be very economic, but it also implies various potential risk factors as well. Therefore, it becomes extremely important to design process considering both economics and safety by integrating process simulation and quantitative risk analysis during preliminary design stage. The target of this study is LNG liquefaction process. By the simulation using Aspen HYSYS and quantitative risk analysis, the design variables of the process were determined in the way to minimize the inherent explosion risks and operating cost. Instead of the optimization tool of Aspen HYSYS, the optimization was performed by using stochastic optimization algorithm (Covariance Matrix Adaptation-Evolution Strategy, CMA-ES) which was implemented through automation between Aspen HYSYS and Matlab. The research obtained that the important variable to enhance inherent safety was the operation pressure of mixed refrigerant. The inherent risk was able to be reduced about 4~18% by increasing the operating cost about 0.5~10%. As the operating cost increases, the absolute value of risk was decreased as expected, but cost-effectiveness of risk reduction had decreased. Integration of process simulation and quantitative risk analysis made it possible to design inherently safe process, and it is expected to be useful in designing the less risky process since risk factors in the process can be numerically monitored during preliminary process design stage.

Improvement in facies discrimination using multiple seismic attributes for permeability modelling of the Athabasca Oil Sands, Canada (캐나다 Athabasca 오일샌드의 투수도 모델링을 위한 다양한 탄성파 속성들을 이용한 상 구분 향상)

  • Kashihara, Koji;Tsuji, Takashi
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.80-87
    • /
    • 2010
  • This study was conducted to develop a reservoir modelling workflow to reproduce the heterogeneous distribution of effective permeability that impacts on the performance of SAGD (Steam Assisted Gravity Drainage), the in-situ bitumen recovery technique in the Athabasca Oil Sands. Lithologic facies distribution is the main cause of the heterogeneity in bitumen reservoirs in the study area. The target formation consists of sand with mudstone facies in a fluvial-to-estuary channel system, where the mudstone interrupts fluid flow and reduces effective permeability. In this study, the lithologic facies is classified into three classes having different characteristics of effective permeability, depending on the shapes of mudstones. The reservoir modelling workflow of this study consists of two main modules; facies modelling and permeability modelling. The facies modelling provides an identification of the three lithologic facies, using a stochastic approach, which mainly control the effective permeability. The permeability modelling populates mudstone volume fraction first, then transforms it into effective permeability. A series of flow simulations applied to mini-models of the lithologic facies obtains the transformation functions of the mudstone volume fraction into the effective permeability. Seismic data contribute to the facies modelling via providing prior probability of facies, which is incorporated in the facies models by geostatistical techniques. In particular, this study employs a probabilistic neural network utilising multiple seismic attributes in facies prediction that improves the prior probability of facies. The result of using the improved prior probability in facies modelling is compared to the conventional method using a single seismic attribute to demonstrate the improvement in the facies discrimination. Using P-wave velocity in combination with density in the multiple seismic attributes is the essence of the improved facies discrimination. This paper also discusses sand matrix porosity that makes P-wave velocity differ between the different facies in the study area, where the sand matrix porosity is uniquely evaluated using log-derived porosity, P-wave velocity and photographically-predicted mudstone volume.