• Title/Summary/Keyword: Stochastic Approximation

Search Result 137, Processing Time 0.022 seconds

Numerical Comparisons for the Null Distribution of the Bagai Statistic

  • Ha, Hyung-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.2
    • /
    • pp.267-276
    • /
    • 2012
  • Bagai et al. (1989) proposed a distribution-free test for stochastic ordering in the competing risk model, and recently Murakami (2009) utilized a standard saddlepoint approximation to provide tail probabilities for the Bagai statistic under finite sample sizes. In the present paper, we consider the Gaussian-polynomial approximation proposed in Ha and Provost (2007) and compare it to the saddlepoint approximation in terms of approximating the percentiles of the Bagai statistic. We make numerical comparisons of these approximations for moderate sample sizes as was done in Murakami (2009). From the numerical results, it was observed that the Gaussianpolynomial approximation provides comparable or greater accuracy in the tail probabilities than the saddlepoint approximation. Unlike saddlepoint approximation, the Gaussian-polynomial approximation provides a simple explicit representation of the approximated density function. We also discuss the details of computations.

A NUMERICAL SCHEME TO SOLVE NONLINEAR BSDES WITH LIPSCHITZ AND NON-LIPSCHITZ COEFFICIENTS

  • FARD OMID S.;KAMYAD ALl V.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.73-93
    • /
    • 2005
  • In this paper, we attempt to present a new numerical approach to solve non-linear backward stochastic differential equations. First, we present some definitions and theorems to obtain the conditions, from which we can approximate the non-linear term of the backward stochastic differential equation (BSDE) and we get a continuous piecewise linear BSDE correspond with the original BSDE. We use the relationship between backward stochastic differential equations and stochastic controls by interpreting BSDEs as some stochastic optimal control problems, to solve the approximated BSDE and we prove that the approximated solution converges to the exact solution of the original non-linear BSDE in two different cases.

A NOTE ON THE APPROXIMATE SOLUTIONS TO STOCHASTIC DIFFERENTIAL DELAY EQUATION

  • KIM, YOUNG-HO;PARK, CHAN-HO;BAE, MUN-JIN
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.5_6
    • /
    • pp.421-434
    • /
    • 2016
  • The main aim of this paper is to discuss the difference between the Euler-Maruyama's approximate solutions and the accurate solution to stochastic differential delay equation. To make the theory more understandable, we impose the non-uniform Lipschitz condition and weakened linear growth condition. Furthermore, we give the pth moment continuous of the approximate solution for the delay equation.

FINITE ELEMENT APPROXIMATIONS OF THE OPTIMAL CONTROL PROBLEMS FOR STOCHASTIC STOKES EQUATIONS

  • Choi, Youngmi;Kim, Soohyun;Lee, Hyung-Chun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.847-862
    • /
    • 2014
  • Finite element approximation solutions of the optimal control problems for stochastic Stokes equations with the forcing term perturbed by white noise are considered. Error estimates are established for the fully coupled optimality system using Brezzi-Rappaz-Raviart theory. Numerical examples are also presented to examine our theoretical results.

Control of an stochastic nonlinear system by the method of dynamic programming

  • Choi, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.156-161
    • /
    • 1994
  • In this paper, we consider an optimal control problem of a nonlinear stochastic system. Dynamic programming approach is employed for the formulation of a stochastic optimal control problem. As an optimality condition, dynamic programming equation so called the Bellman equation is obtained, which seldom yields an analytical solution, even very difficult to solve numerically. We obtain the numerical solution of the Bellman equation using an algorithm based on the finite difference approximation and the contraction mapping method. Optimal controls are constructed through the solution process of the Bellman equation. We also construct a test case in order to investigate the actual performance of the algorithm.

  • PDF

AN APPROXIMATED EUROPEAN OPTION PRICE UNDER STOCHASTIC ELASTICITY OF VARIANCE USING MELLIN TRANSFORMS

  • Kim, So-Yeun;Yoon, Ji-Hun
    • East Asian mathematical journal
    • /
    • v.34 no.3
    • /
    • pp.239-248
    • /
    • 2018
  • In this paper, we derive a closed-form formula of a second-order approximation for a European corrected option price under stochastic elasticity of variance model mentioned in Kim et al. (2014) [1] [J.-H. Kim, J Lee, S.-P. Zhu, S.-H. Yu, A multiscale correction to the Black-Scholes formula, Appl. Stoch. Model. Bus. 30 (2014)]. To find the explicit-form correction to the option price, we use Mellin transform approaches.

BOUNDEDNESS AND CONTINUITY OF SOLUTIONS FOR STOCHASTIC DIFFERENTIAL INCLUSIONS ON INFINITE DIMENSIONAL SPACE

  • Yun, Yong-Sik;Ryu, Sang-Uk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.807-816
    • /
    • 2007
  • For the stochastic differential inclusion on infinite dimensional space of the form $dX_t{\in}\sigma(X_t)dW_t+b(X_t)dt$, where ${\sigma}$, b are set-valued maps, W is an infinite dimensional Hilbert space valued Q-Wiener process, we prove the boundedness and continuity of solutions under the assumption that ${\sigma}$ and b are closed convex set-valued satisfying the Lipschitz property using approximation.

PRICING OF QUANTO OPTION UNDER THE HULL AND WHITE STOCHASTIC VOLATILITY MODEL

  • Park, Jiho;Lee, Youngrok;Lee, Jaesung
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.615-633
    • /
    • 2013
  • We use a power series expansion method to get an analytic approximation value for the quanto option price under the Hull and White stochastic volatility model, which turns out to be accurate enough by comparing with the simulation prices using Monte Carlo method.

Computational Solution of a H-J-B equation arising from Stochastic Optimal Control Problem

  • Park, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.440-444
    • /
    • 1998
  • In this paper, we consider numerical solution of a H-J-B (Hamilton-Jacobi-Bellman) equation of elliptic type arising from the stochastic control problem. For the numerical solution of the equation, we take an approach involving contraction mapping and finite difference approximation. We choose the It(equation omitted) type stochastic differential equation as the dynamic system concerned. The numerical method of solution is validated computationally by using the constructed test case. Map of optimal controls is obtained through the numerical solution process of the equation. We also show how the method applies by taking a simple example of nonlinear spacecraft control.

  • PDF

SOME STABILITY RESULTS FOR SEMILINEAR STOCHASTIC HEAT EQUATION DRIVEN BY A FRACTIONAL NOISE

  • El Barrimi, Oussama;Ouknine, Youssef
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.631-648
    • /
    • 2019
  • In this paper, we consider a semilinear stochastic heat equation driven by an additive fractional white noise. Under the pathwise uniqueness property, we establish various strong stability results. As a consequence, we give an application to the convergence of the Picard successive approximation.