• Title/Summary/Keyword: Stirling's formula

Search Result 8, Processing Time 0.018 seconds

A PROOF OF STIRLING'S FORMULA

  • Park, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.853-855
    • /
    • 1994
  • The object of present note is to give a very short proof of Stirling's formula which uses only a formula for the generalized zeta function. There are several proofs for this formula. For example, Dr. E. J. Routh gave an elementary proof using Wallis' theorem in lectures at Cambridge ([5, pp.66-68]). We can find another proof which used the Maclaurin summation formula ([5, pp.116-120]). In [1], they used the Central Limit Theorem or the inversion theorem for characteristic functions. In [2], pp. Diaconis and D. Freeman provided another proof similarly as in [1]. J. M. Patin [7] used the Lebesgue dominated convergence theorem.

  • PDF

ON p, q-DIFFERENCE OPERATOR

  • Corcino, Roberto B.;Montero, Charles B.
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.537-547
    • /
    • 2012
  • In this paper, we define a $p$, $q$-difference operator and obtain an explicit formula which is used to express the $p$, $q$-analogue of the unified generalization of Stirling numbers and its exponential generating function in terms of the $p$, $q$-difference operator. Explicit formulas for the non-central $q$-Stirling numbers of the second kind and non-central $q$-Lah numbers are derived using the new $q$-analogue of Newton's interpolation formula. Moreover, a $p$, $q$-analogue of Newton's interpolation formula is established.

FOUR LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTIONS INVOLVING GAMMA FUNCTION

  • Qi, Feng;Niu, Da-Wei;Cao, Jian;Chen, Shou-Xin
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.559-573
    • /
    • 2008
  • In this paper, two classes of functions, involving a parameter and the classical Euler gamma function, and two functions, involving the classical Euler gamma function, are verified to be logarithmically completely monotonic in $(-\frac{1}{2},\infty)$ or $(0,\infty)$; some inequalities involving the classical Euler gamma function are deduced and compared with those originating from certain problems of traffic flow, due to J. Wendel and A. Laforgia, and relating to the well known Stirling's formula.

A NOTE ON MORLEY'S FORMULA

  • Cho, Young-Joon;Park, In-Hyok;Seo, Tae-Young;Choi, June-Sang
    • East Asian mathematical journal
    • /
    • v.15 no.2
    • /
    • pp.201-210
    • /
    • 1999
  • Morley provided an interesting identity about 20 years earlier before its more generalized form was given by Dixon. In this note some of its generalized forms and an application of Morley's formula are considered.

  • PDF

MATHEMATICAL CONSTANTS ASSOCIATED WITH THE MULTIPLE GAMMA FUNCTIONS

  • Jung, Myung-Ho;Cho, Young-Joon;Choi, June-Sang
    • East Asian mathematical journal
    • /
    • v.21 no.1
    • /
    • pp.77-103
    • /
    • 2005
  • The theory of multiple Gamma functions was studied in about 1900 and has, recently, been revived in the study of determinants of Laplacians. There is a class of mathematical constants involved naturally in the multiple Gamma functions. Here we summarize those mathematical constants associated with the Gamma and multiple Gamma functions and will show how they are involved, if possible.

  • PDF

NEW SEVEN-PARAMETER MITTAG-LEFFLER FUNCTION WITH CERTAIN ANALYTIC PROPERTIES

  • Maryam K. Rasheed;Abdulrahman H. Majeed
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.99-111
    • /
    • 2024
  • In this paper, a new seven-parameter Mittag-Leffler function of a single complex variable is proposed as a generalization of the standard Mittag-Leffler function, certain generalizations of Mittag-Leffler function, hypergeometric function and confluent hypergeometric function. Certain essential analytic properties are mainly discussed, such as radius of convergence, order, type, differentiation, Mellin-Barnes integral representation and Euler transform in the complex plane. Its relation to Fox-Wright function and H-function is also developed.

A q-ANALOGUE OF $\omega-BERNOULLI$ NUMBERS AND THEIR APPLICATIONS

  • Son, Jin-Woo;Jang, Douk-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.399-412
    • /
    • 2001
  • In this paper, we consider that the q-analogue of w$\omega-Bernoulli numbers\; B_i(\omega, q)$. And we calculate the sums of products of two q-analogue of $\omega-Bernoulli numbers B_i(\omega, q)$ in complex cases. From this result, we obtain the Euler type formulas of the Carlitz´s q-Bernoulli numbers $\beta_i(q)$ and q-Bernoulli numbers $B_i(q)$. And we also calculate the p-adic Stirling type series by the definition of $B_i(\omega, q)$ in p-adic cases.

  • PDF