• Title/Summary/Keyword: Stinkhorn fungus

Search Result 3, Processing Time 0.016 seconds

A Rare Stinkhorn Fungus Itajahya rosea Attract Drosophila by Producing Chemical Attractants

  • Borde, Mahesh;Kshirsagar, Yogesh;Jadhav, Reshma;Baghela, Abhishek
    • Mycobiology
    • /
    • v.49 no.3
    • /
    • pp.223-234
    • /
    • 2021
  • Itajahya rosea was found growing in association with Leucaena leucocephala plants at Savitribai Phule Pune University campus in India. The species identity was confirmed by phylogenetic analysis based on ITS and LSU regions of rDNA, wherein, our fugus was placed along with I. rosea in phylogenetic tree. It represents first record of I. rosea from India. Frequent visitation by Drosophila species on I. rosea fruiting body particularly on gleba was observed. The Drosophila got attracted to the detached gleba under the laboratory conditions and even sometimes, they prefer to sit over the gleba as compare to their food banana. It suggested that I. rosea gleba or pseudostipe produces some compounds for attraction and feeding behavior of Drosophila species. Therefore, we characterized the volatile attractants produced by gleba and pseudostipe of I. rosea by GC-MS analysis. Nineteen compounds were identified from gleba while nine compounds were recovered from the pseudostipe. Out of them, blends of three abundant odor producing volatile compounds were reported namely, Hexadecane, Pentadecane and Nonadecane, which are responsible for attraction of Drosophila toward the gleba. Three fatty acids namely 9,12-octadecadienoic acid (Z,Z), hexadecanoic acid and benzoic acid ethyl ester produced are served as an appetitive signal through olfactory response of Drosophila, so the flies were feed on the gleba. Two pheromones' compounds, heneicosane and (+)-(5S,9S)-5,9-dimethylpentadecane, were also reported in pseudostipe and gleba, respectively, which play a role in Drosophila for breeding. Our study highlights an intriguing chemical ecology of fungus-Drosophila interaction.

Phallus chiangmaiensis sp. nov. and a Record of P. merulinus in Thailand

  • Sommai, Sujinda;Khamsuntorn, Phongsawat;Somrithipol, Sayanh;Luangsa-ard, Janet Jennifer;Pinruan, Umpawa
    • Mycobiology
    • /
    • v.49 no.5
    • /
    • pp.439-453
    • /
    • 2021
  • During the rainy season in Thailand, specimens of Phallus chiangmaiensis sp. nov. and P. merulinus were collected from Chiang Mai and Samut Sakhon Provinces, respectively. Molecular phylogenetic analyses based on sequences of the nuclear ribosomal large subunit (LSU), nuclear ribosomal 5.8S gene including the internal transcribed spacer regions 1 and 2 (ITS), and the protein-coding gene atp6 (mitochondrial adenosine triphosphate [ATP] synthase subunit 6) support the placement of the new species within Phallus. Phallus chiangmaiensis has a well-developed white indusium and campanulated caps with reticulate surfaces. It differs morphologically from the related species, as supported by the phylogenetic data. Phallus merulinus is reported here as a species that was re-encountered in Thailand. The descriptions of the species are accompanied by illustrations of macro- and micro- morphological features, and a discussion of the related taxa is presented.

A Newly Identified Phallus (Phallaceae, Basidiomycota) Species, P. hadriani, in South Korea (말뚝버섯속의 국내 미기록종(Phallus hadriani) 보고)

  • Jo, Jong Won;Sim, Joungkyo;Sim, Joo Suk;Kwag, Young-Nam;Kim, Hyung So;Park, Sang Young;Han, Sang-Kuk;Han, Jae-Gu;Oh, Seung Hwan;Kim, Chang Sun
    • The Korean Journal of Mycology
    • /
    • v.48 no.3
    • /
    • pp.345-353
    • /
    • 2020
  • As part of the mushroom surveys in the unexplored areas of Korea in 2019 and 2020, a phalloid fungus was found in a saline sand beach. The specimen was mainly characterized by its reticulate pileus and violet volva with well-developed rhizomorphs. Based on ribosomal DNA internal transcribed spacer (ITS) sequencing and morphological characteristics, the specimen was identified as Phallus hadriani. Additionally, a morphological comparison of closely related species was performed. This study describes for the first time the presence of P. hadriani in Korea.