• Title/Summary/Keyword: Stiffness and Damping Coefficients

Search Result 161, Processing Time 0.02 seconds

The Effect of Surface-Friction-Factor-Jump Characteristics on Retordynamics of a Seal (마찰계수 급상승 특성이 실의 로터다이나믹 특성에 미치는 영향)

  • 하태웅
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.197-203
    • /
    • 1996
  • This study is to analyze the rotordynamic effect of surface-friction- factor characteristics on an annular seal. The honeycomb geometry which shows friction-factor-jump phenomena is used in this study. A rotordynamic analysis for a contered annular seal has been developed by incorporating empirical friction-factor model for honeycomb stator surfaces. The results of the analysis for the honeycomb seal showing the friction-factor jump is compared to the non- friction-factor-jump case. The results yield that the friction-factor-jump decreasesdirect stiffness and cross coupled stiffness coefficients, and increases damping coefficient to stabilize rotating machinery in a rotordynamic point of view. The analysis of the honeyeomb seal for the friction-factor-jump case shows reasonably good compared to experimental results, especially, for cross coupled and damping coeffcients.

  • PDF

Optimum study on wind-induced vibration control of high-rise buildings with viscous dampers

  • Zhou, Yun;Wang, DaYang;Deng, XueSong
    • Wind and Structures
    • /
    • v.11 no.6
    • /
    • pp.497-512
    • /
    • 2008
  • In this paper, optimum methods of wind-induced vibration control of high-rise buildings are mainly studied. Two optimum methods, genetic algorithms (GA) method and Rayleigh damping method, are firstly employed and proposed to perform optimum study on wind-induced vibration control, six target functions are presented in GA method based on spectrum analysis. Structural optimum analysis programs are developed based on Matlab software to calculate wind-induced structural responses. A high-rise steel building with 20-storey is adopted and 22 kinds of control plans are employed to perform comparison analysis to validate the feasibility and validity of the optimum methods considered. The results show that the distributions of damping coefficients along structural height for mass proportional damping (MPD) systems and stiffness proportional damping (SPD) systems are entirely opposite. Damping systems of MPD and GAMPD (genetic algorithms and mass proportional damping) have the best performance of reducing structural wind-induced vibration response and are superior to other damping systems. Standard deviations of structural responses are influenced greatly by different target functions and the influence is increasing slightly when higher modes are considered, as shown fully in section 5. Therefore, the influence of higher modes should be considered when strict requirement of wind-induced vibration comfort is needed for some special structures.

An Experimental Study on the Structural Stiffness and Damping of Self-Acting Compliant Foil Journal Bearings (범프 포일 베어링들의 동적 계수에 관한 연구)

  • 이용복;김태호;김창호;이남수;최동훈
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.282-289
    • /
    • 2001
  • Experiments were conducted to determine the structural dynamic characteristics of bump foil bearing. The housing of the bearing on the journal was driven by two shakers which were used to simulate dynamic forces acting on the bump foil strips. Three different bump foils(Cu-coated bump, silicon bump, viscoelastic bump) are tested and the dynamic coefficients of three bump foils compared, based on the experimental measurements for a wide range of operating conditions. From the test results, the high damping coefficients of viscoelastic bump are achieved and the possibility of the super-bending-critical operation is suggested.

  • PDF

Application of WAK test to Identify Unstable Concrete Sleeper

  • Ngo, Vu Thanh;Park, Jaehak;Park, Seongbaek;Lim, Yujin
    • International Journal of Railway
    • /
    • v.9 no.2
    • /
    • pp.46-49
    • /
    • 2016
  • In this study a new detection technique based on WAK is introduced that can be used for identifying unstable concrete sleeper installed in ballast by triggering activated wave on the sleeper surface. If a gap exists immediately below the concrete sleeper, static stiffness can be lower than stable case's stiffness. The concrete sleeper is assumed as a single degree of freedom system (SDOF). The static stiffness K can be obtained by iteratively calculated mass (m), stiffness (k) and damping coefficient (c) of SDOF system. Those coefficients are used to specify the ballast condition such as a gap between the sleeper and ballast. Typical test results using a small sleeper model test are summarized and explained for proof of effectiveness of the WAK test for checking unstable condition of the sleeper.

Dynamic coefficients of A High-Speed Rotor Supported by A Slotted ER Squeeze Film Damper (ER 스퀴즈 필름 댐퍼로 지지된 고속 회전 로터의 동적 계수에 관한 연구)

  • Lee, Yong-Bok;Kim, Chang-Ho;Seok, Ki-Young;Lee, Nam-Soo;Choi, Dong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1286-1291
    • /
    • 2000
  • A new electro-rheological squeeze film damper (ER SFD) has been sealed with slotted piston rings which have electrodes at the inside of the constant gap. The slotted ER SFD can prevent the problem of electric discharge which might be occurred in the previous configuration of an ER SFD. The current paper presents the extraction of linearized dynamic coefficients within small orbit where these coefficients are controlled by the application of electric strength. Test rig has been modified to isolate the damper section for dynamic coefficient extraction. The results show that rotordynamic coefficients, damping and inertia terms, increase with increasing supply voltages, while stiffness coefficients decrease with increasing supply voltages. Rotating speed of rigid Shaft does not affect these coefficients.

  • PDF

Dynamic Coefficients of a High-Speed Rotor Supported by a Slotted ER Squeeze Film Damper (ER 스퀴즈 필름 댐퍼로 지지된 고속 회전 로터의 동적 계수에 관한 연구)

  • 이용복;김창호;정시영;이남수;최동훈
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1029-1034
    • /
    • 2000
  • A new electro-rheological squeeze film damper (ER-SFD) has been sealed with slotted piston rings which have electrodes at the inside of the constant gap. The slotted ER-SFD can prevent the problem of electric discharge which might be occurred in the previous configuration of an ER-SFD. The current paper presents the extraction of linearized dynamic coefficients within small orbit where these coefficients are controlled by the application of electric strength. Test rig has been modified to isolate the damper section for dynamic coefficient extraction. The results show that rotordynamic coefficients, damping and inertia terms, increase with increasing supply voltages, while stiffness coefficients decrease with increasing supply voltages. notating speed of rigid shaft does not affect these coefficients.

  • PDF

Improvement on Prediction of Circumferential-Groove-Pump Seal with CFD Analysis (CFD를 사용한 평행 홈 펌프 시일의 해석 개선)

  • Ha, Tae-Woong
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.291-296
    • /
    • 2008
  • In order to improve the leakage prediction and rotordynamic analysis of an annular seal with a smooth rotor and circumferentially grooved stator, CFD analysis using FLUENT has been performed to determine the groove penetration angle a which is the angle of separation line between control volumes II and III in groove section of Ha and Lee's three-control-volume theory. Validation to the present analysis using new penetration angle determined by the CFD analysis is achieved by comparisons with the results of published Ha and Lee's analysis. For the leakage prediction the present analysis shows slight improvement and CFD results yields the best. Direct damping and cross-coupled stiffness coefficients are predicted better to the experimental ones. However, direct stiffness coefficient is predicted worse.

A study on the dynamic characteristics of an epicyclic gear trains supported with journal bearing (저널베어링으로 지지된 유성기어열의 동특성에 관한 연구)

  • Lee, Jeong-Han;Ryu, Hyeong-Tae;Cheon, Gil-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.198-205
    • /
    • 1998
  • In this paper, the dynamic characteristics of a star type epicyclic gear train have been analyzed. Nonlinear stiffness of a gear pair were obtained considering the bending and shear deformation, Hertz contact deformation, as well as tooth fillet deformation. Nonlinear stiffness coefficients and damping coefficients around the static equilibrium position were obtained by perturbation method. The loci of the planet gears and sun gear were estimated. Tooth meshing forces and bearing reaction forces were calculated. The effects of bearing clearance and oil viscosity on the gear behavior were also analyzed.

Prediction of Changed Design Parameter of Proportional Damping Structure by Using Modified Dynamic Characteristics (동특성 변화를 이용하여 비례감쇠 구조물의 변경된 설계파라미터 예측)

  • Lee, Jung-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.873-879
    • /
    • 2010
  • It is common to predict structural dynamic design parameters due to the change of design parameter, but to predict the amount of changed design parameter where the mass and stiffness are being modified are rarely found in previous literature. In this study, the changed design parameter in a proportional damping system is predicted by using sensitivity coefficients and an iterative method. The sensitivity coefficients are determined from the changes in eigenvectors; these changes are due to modification. This method is applied to a three-story shear structure. To validate the prediction of the changed design parameter, the results are compared to the reanalysis results; both results are in good agreement.

Determination of the Dynamic Coefficients of the Coupled Journal and Thrust Bearings by the Perturbation Method (수학적 섭동법을 이용한 저널과 스러스트가 연성된 유체 동압 베어링의 동특성 계수 해석)

  • Lee, Sang-Hoon;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.746-753
    • /
    • 2006
  • This paper proposes a method to calculate the stiffness and the damping coefficients of the coupled journal and thrust bearings. The Reynolds equations and their perturbation equations are transformed to the finite element equations by considering the continuity of pressure and flow at the interface between bearings. The Reynolds boundary condition is used in the numerical analysis to simulate the cavitation phenomena. The dynamic coefficients of the proposed method are compared with those of the numerical differentiation of the loads with respect to finite displacements and velocities of bearing center. It shows that the proposed method is more accurate and efficient than the differentiation method.