• 제목/요약/키워드: Stiffness Modulus

검색결과 486건 처리시간 0.028초

FRP-보강근 콘크리트 부재의 처짐 거동 (Deflection Behavior of Concrete Members Reinforced with FRP Bars)

  • 최봉섭
    • 한국산학기술학회논문지
    • /
    • 제12권2호
    • /
    • pp.936-943
    • /
    • 2011
  • ACI 440.1R-06 설계지침에서는 FRP-보강근 콘크리트 부재의 처짐 계산을 위해 Branson에 의해 제안된 유효단면2차모멘트를 수정 보완하여 제시하고 있다. 그러나 다수의 연구자들은 아직까지도 적용범위의 적절성에 대해 의문점을 제기하고 있다. 이에 본 연구에서는 12개의 장방형 단면과 9개의 T형단면의 FRP-보강근 콘크리트 시험체를 제작하여 처짐 실험을 통해 얻어지는 실험값과 제안된 이론식에 의해 얻어진 계산값을 비교 분석하여 합리적인 처짐설계를 위한 기초자료를 제안하고자 하였다. 결과로서 FRP-보강근 콘크리트 보의 처짐값은 장방형단면에서는 계산값이 실험값 보다 과소평가 되었으나, T형단면에서는 계산값이 실험값 보다 다소 과대평가 되어 나타났다.

배면 및 압밀그라우팅에 의한 터널 라이닝 하중 연구 (Investigation of the Lining Load Induced by Backfill and Consolidation Grouting)

  • 박동순;김학준;김완영
    • 지질공학
    • /
    • 제13권4호
    • /
    • pp.445-456
    • /
    • 2003
  • 배면그라우팅과 압밀그라우팅 보강기슬은 터널의 안정성 향상을 위해 터널현장에서 활발히 사용되고있다. 그러나 이에 대한 시공 및 관리 기술 연구는 상대적으로 대단히 미흡한 실정이다. 본 연구에서는 심부에 위치한 도수로 터널 시험 구간에 대하여 그라우팅 전후의 각종 현장 시험과 라이닝 계측을 실시하여 압밀그라우팅 및 배면그라우팅 보강이 콘크리트 라이닝의 응력 및 변형 특성에 미치는 영향을 분석하였다. 터널 그라우팅 보강 효과를 연구한 결과, 그라우팅 보강으로 인해 암반의 탄성계수는 최대 5배까지 증가하였으며 전체적으로 그라우팅의 고결효과는 주목할 만 하였다. 또한, 라이닝 배면에 작용하는 그라우팅 압력은 주입압의 약 10%에 불과하였다. 본 연구 결과는 콘크리트 라이닝 설계시 활용될 수 있을 것으로 기대된다.

광디스크 드라이브 방진마운트의 동특성 예측 (Dynamic Characteristics Prediction of Rubber Mounts for Anti-Vibration of an Optical Disk Drive)

  • 김국원;김남웅;임종락;안태길
    • 한국정밀공학회지
    • /
    • 제18권12호
    • /
    • pp.104-109
    • /
    • 2001
  • With the increase of storage density and data transfer rates in optical disk drive, mechanical issues, mainly noise and vibration, become critical. Rubber materials are extensively used in various machine design application, mainly for vibration/shock/noise control devices. However, there are still a lot of difficulties in the use of designing the rubber components with complex shape and under pre-deformed state. It was demonstrated in that the variation of rubber component stiffness with the pre-deformed state were calculated by the finite element method and the reliability of numerical results were checked by compared with the measuring the deflection values. This paper presents a efficient design method of rubber mounts for anti-vibration of an optical disk thrive. With an empirical equation to estimate elastic modulus from hardness, and dynamic characteristics of rubber material of a cylindrical shape, this method is capable of predicting the dynamic characteristics of rubber components at design stage.

  • PDF

의료용 초음파탄성영상법 (Medical Ultrasonic Elasticity Imaging Techniques)

  • 정목근
    • 비파괴검사학회지
    • /
    • 제32권5호
    • /
    • pp.573-584
    • /
    • 2012
  • 유방이나 전립선과 같은 연조직에서 발생하는 암이나 종양은 주위 조직보다 단단한 경향을 가진다. 하지만 초음파 B-mode 영상을 보면 암은 주위 조직과 거의 비슷하여 구별하기 어렵다. 따라서 조직의 단단한 정도를 영상화하면 더 정량적인 정보를 제공해 진단에 도움을 줄 수 있다. 초음파탄성영상은 측정하고자 하는 연조직에 기계적인 힘을 가하고 변형된 정도를 측정하여 영상화 한다. 탄성영상은 기존의 초음파 영상 진단기법과 더불어 종양을 진단하는 유용한 방법으로 자리매김하고 있다. 본 논문에서는 지금까지 발표된 다양한 탄성영상 방법을 분류하고 각 방법의 원리, 특성 등을 살펴본다.

Dynamic analysis of ACTIVE MOUNT using viscoelastic-elastoplastic material model

  • Park, Taeyun;Jung, Wonuk
    • International Journal of Reliability and Applications
    • /
    • 제17권2호
    • /
    • pp.137-147
    • /
    • 2016
  • The engine mount of a car subjected to a pre-load related to the weight of the engine, and acts to insulate the vibration coming from the engine by moving on large or small displacement depending on the driving condition of the car. The vibration insulation of the engine mount is an effect obtained by dissipating the mechanical energy into heat by the viscosity characteristic of the rubber and the microscopic behavior of the additive carbon black. Therefore, dynamic stiffness from the intrinsic properties of rubber filled with carbon black at the design stage is an important design consideration. In this paper, we introduced a hyper-elastic, visco-elastic and elasto-plastic model to predict the dynamic characteristics of rubber, and developed a fitting program to determine the material model parameters using MATLAB. The dynamic characteristics analysis of the rubber insulator of the ACTIVE MOUNT was carried out by using MSC.MARC nonlinear structural analysis software, which provides the dynamic characteristics material model. The analysis results were compared with the dynamic characteristics test results of the rubber insulator, which is one of the active mount components, and the analysis results were confirmed to be valid.

기저판의 탄성에 따른 유연촉각센서의 성능변화 연구 (Study on the Performance of Flexible Tactile Sensors According to the Substrate Stiffness)

  • 김송호;김호찬;이인환
    • 한국기계가공학회지
    • /
    • 제20권9호
    • /
    • pp.104-109
    • /
    • 2021
  • Tactile sensors and integrated circuits that detect external stimuli have been developed for use in various industries. Most tactile sensors have been developed using the MEMS(micro electro-mechanical systems) process in which metal electrodes and strain sensors are applied to a silicon substrate. However, tactile sensors made of highly brittle silicon lack flexibility and are prone to damage by external forces. Flexible tactile sensors based on polydimethylsiloxane and using a multi-walled carbon nano-tube mixture as a pressure-sensitive material are currently being developed as an alternative to overcome these limitations. In this study, a manufacturing process of pressure-sensitive materials with low initial electrical resistance is developed and applied to the fabrication of flexible tactile sensors. In addition, flexible tactile sensors are developed with pressure-sensitive materials dispensed on a substrate with flexible mechanical properties. Finally, a study is conducted on the change in electrical resistance of pressure-sensitive materials according to the modulus of elasticity of the substrate.

Groutability enhancement by oscillatory grout injection: Verification by field tests

  • Kim, Byung-Kyu;Lee, In-Mo;Kim, Tae-Hwan;Jung, Jee-Hee
    • Geomechanics and Engineering
    • /
    • 제18권1호
    • /
    • pp.59-69
    • /
    • 2019
  • Grout injection is mainly used for permeability reduction and/or improvement of the ground by injecting grout material into pores, cracks, and joints in the ground. The oscillatory grout injection method was developed to enhance the grout penetration. In order to verify the level of enhancement of the grout, field grout injection tests, both static and oscillatory tests, were performed at three job sites. The enhancement in the permeability reduction and ground improvement effect was verified by performing a core boring, borehole image processing analysis, phenolphthalein test, scanning electron microscopy analysis, variable heat test, Lugeon test, standard penetration test, and an elastic wave test. The oscillatory grout injection increased the joint filling rate by 80% more and decreased the permeability coefficient by 33-68%, more compared to the static grout injection method. The constrained modulus of the jointed rock mass was increased by 50% more with oscillatory grout injection compared to the static grout injection, indicating that the oscillatory injection was more effective in enhancing the stiffness of the rock mass.

Vibration-based method for story-level damage detection of the reinforced concrete structure

  • Mehboob, Saqib;Zaman, Qaiser U.
    • Computers and Concrete
    • /
    • 제27권1호
    • /
    • pp.29-39
    • /
    • 2021
  • This study aimed to develop a method for the determination of the damaged story in reinforced concrete (RC) structure with ambient vibrations, based on modified jerk energy methodology. The damage was taken as a localized reduction in the stiffness of the structural member. For loading, random white noise excitation was used, and dynamic responses from the finite element model (FEM) of 4 story RC shear frame were extracted at nodal points. The data thus obtained from the structure was used in the damage detection and localization algorithm. In the structure, two damage configurations have been introduced. In the first configuration, damage to the structure was artificially caused by a local reduction in the modulus of elasticity. In the second configuration, the damage was caused, using the Elcentro1940 and Kashmir2005 earthquakes in real-time history. The damage was successfully detected if the frequency drop was greater than 5% and the mode shape correlation remained less than 0.8. The results of the damage were also compared to the performance criteria developed in the Seismostruct software. It is demonstrated that the proposed algorithm has effectively detected the existence of the damage and can locate the damaged story for multiple damage scenarios in the RC structure.

Study on mechanical behaviors of loose mortise-tenon joint with neighbouring gap

  • He, Jun-xiao;Wang, Juan;Yang, Qing-shan;Han, Miao;Deng, Yang
    • Structural Engineering and Mechanics
    • /
    • 제77권4호
    • /
    • pp.509-521
    • /
    • 2021
  • The neighbouring gaps at the mortise-tenon joint in traditional timber structure, which leads to the complexity of the joint, are considered to impair the mechanical performance of the joint. In this paper, numerical simulation of loose joint was conducted to examine the deformation states, stress distributions, and bearing capacities, which was verified by full-scale test. On the basis of the experimental and numerical results, a simplified mechanics model with gaps has been proposed to present the bending capacity of the loose joint. Besides, the gap effects and parameter studies on the influences of tenon height, friction coefficient, elastic modulus and axial load were also investigated. As a result, the estimated relationship between moment and rotation angle of loose joint showed the agreement with the numerical results, demonstrating validity of the proposed model; The bending bearing capacity and rotational stiffness of loose joint had a certain drop with the increasing of gaps; and the tenon height may be the most important factor affecting the mechanical behaviors of the joint when it is subjected to repeated load; Research results can provide important references on the condition assessments of the existing mortise-tenon joint.

Mechanical and Thermal Properties of Liquefied Wood Polymer Composites (LWPC)

  • Hyun, Doh Geum;Kang, In Aeh;Lee, Sun Young;Kong, Young To
    • Journal of the Korean Wood Science and Technology
    • /
    • 제32권6호
    • /
    • pp.67-73
    • /
    • 2004
  • The influence of liquefied wood (LW) on the mechanical and thermal properties of liquefied wood-polymer composites (LWPC) was investigated in this study. The thermal behaviors of LWPC were characterized by means of thermogravimetric (TGA) and differential scanning calorimetric (DSC) analyses. LW showed significant effects on the mechanical strength properties. The increase of flexural MOE and Young's modulus was related to the increase of stiffness of LWPC. The effect of LW was also significant on the flexural and tensile MOR. The impact strength decreased with the increase of LW application level. With the increased stress concentration by the poor bonding between LW and polymer, the impact strength of LWPC decreased, compared with that of high-density polyethylene (HDPE). The thermal stability of LWPC decreased with the increase of LW content up to 40%. The melting temperature of HDPE decreased with the increase of LW loading level. Enthalpy of HDPE also decreased with the addition of LW. This study proves the thermal stability necessary for the consolidation of composition materials.