• 제목/요약/키워드: Stiffness Modulus

검색결과 486건 처리시간 0.025초

Cone Pressuremeter Test를 이용한 미소변형에서 전단변형계수 측정 (Measurement of Shear Modulus at Small Strains using Cone Pressuremeter Test)

  • 이장덕
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권1호
    • /
    • pp.135-145
    • /
    • 2005
  • 공용하중 상태에서 지반이 경험하는 변형률 크기는 0.1%~1% 미만임이 밝혀지고 있다. 변형특성보다 엄밀히 평가하기 위하여는 미소변형률 영역에서의 신뢰성 있는 변형측정을 위해 현장시험장비가 필요한 실정이다. 콘과 공내재하시험기를 혼합한 Cone-pressuremeter test(CPM)을 서해안 연약 해성점토층에 수행하였다. 반교란효과를 최소화시키기 위해 제하-재하 Loop를 이용하여 탄성계수를 측정하였으며 공동확장이론의 공내 재하시험 이론식을 이용하여 지반교란이 최소화된 제하단계에 대한 Curve Fitting 방법으로부터 지반의 비배수 강도와 탄성계수를 측정하였다. 측정된 탄성계수, 비배수 강도의 비를 평가해본 결과 $E_u/S_u$가 589로 다른 삼축시험 등 실내시험보다 크게 평가되어 미소변형하의 탄성계수를 신뢰성 있게 산정할 수 있는 것으로 평가되어 수치해석을 통한 지반물성치 산정에 매우 효과적으로 사용할 수 있을 것으로 기대된다.

Cone penetrometer incorporated with dynamic cone penetration method for investigation of track substructures

  • Hong, Won-Taek;Byun, Yong-Hoon;Kim, Sang Yeob;Lee, Jong-Sub
    • Smart Structures and Systems
    • /
    • 제18권2호
    • /
    • pp.197-216
    • /
    • 2016
  • The increased speed of a train causes increased loads that act on the track substructures. To ensure the safety of the track substructures, proper maintenance and repair are necessary based on an accurate characterization of strength and stiffness. The objective of this study is to develop and apply a cone penetrometer incorporated with the dynamic cone penetration method (CPD) for investigating track substructures. The CPD consists of an outer rod for dynamic penetration in the ballast layer and an inner rod with load cells for static penetration in the subgrade. Additionally, an energy-monitoring module composed of strain gauges and an accelerometer is connected to the head of the outer rod to measure the dynamic responses during the dynamic penetration. Moreover, eight strain gauges are installed in the load cells for static penetration to measure the cone tip resistance and the friction resistance during static penetration. To investigate the applicability of the developed CPD, laboratory and field tests are performed. The results of the CPD tests, i.e., profiles of the corrected dynamic cone penetration index (CDI), profiles of the cone tip and friction resistances, and the friction ratio are obtained at high resolution. Moreover, the maximum shear modulus of the subgrade is estimated using the relationships between the static penetration resistances and the maximum shear modulus obtained from the laboratory tests. This study suggests that the CPD test may be a useful method for the characterization of track substructures.

Effect of loading frequency and clay content on the dynamic properties of sandy-clay mixtures using cyclic triaxial tests

  • Alireza Hasibi Taheri;Navid Hadiani;S. Mohammad Ali Sadredini;Mahmood Zakeri Nayeri
    • Geomechanics and Engineering
    • /
    • 제36권4호
    • /
    • pp.317-328
    • /
    • 2024
  • Adopting a rational engineering methodology for building structures on sandy-clay soil layers has become increasingly important since it is crucial when structures erected on them often face seismic and cyclic wave loads. Such loads can cause a reduction in the stiffness, strength, and stability of the structure, particularly under un-drained conditions. Hence, this study aims to investigate how the dynamic properties of sand-clay mixtures are affected by loading frequency and clay content. Cyclic triaxial tests were performed on a total of 36 samples, comprising pure sand with a relative density of 60% and sand with varying percentages of clay. The tests were conducted under confining pressures of 50 and 100 kPa, and the samples' dynamic behavior was analyzed at loading frequencies of 0.1, 1, and 4 Hz. The findings indicate that an increase in confining pressure leads to greater inter-particle interaction and a reduced void ratio, which results in an increase in the soil's shear modulus. An increase in the shear strength and confinement of the samples led to a decrease in energy dissipation and damping ratio. Changes in loading frequency showed that as the frequency increased, the damping ratio decreased, and the strength of the samples increased. Increasing the loading frequency not only reflects changes in frequency but also reduces the relative permeability and enhances the resistance of samples. An analysis of the dynamic properties of sand and sand-clay mixtures indicates that the introduction of clay to a sand sample reduces the shear modulus and permeability properties.

화강풍화토를 이용한 CLSM의 공학적 특성평가 (Evaluation of Engineering Properties of CLSM using Weathered Granite Soils)

  • 임유진;서창범
    • 한국방재학회 논문집
    • /
    • 제9권3호
    • /
    • pp.19-26
    • /
    • 2009
  • 본 연구는 뒷채움재로 사용하는 입상재료의 다공성으로 인하여 발생하는 강성 부족과 이로 인한 변형발생 등의 문제를 극복하기 위한 방법으로서 국내 지표특성상 가장 풍부한 화강풍화토를 사용한 유동성뒷채움재(CLSM)의 배합특성을 분석하였으며 설계배합비에 따른 강도와 강성 발현 특성을 자유단공진주시험(FF/RC), 공내재하시험(PMT) 및 동적평판재하시험(LDWT) 등으로 분석하여 향후 뒷채움재용 화강풍화토 CLSM의 설계 및 시공에 필요한 기초 데이터를 제시하였다.

과잉간극수압 발생을 고려한 중력식 안벽구조물의 동적해석 (Dynamic Analysis of Gravity Quay Wall Considering Development of Excess Pore Pressure in Backfill Soil)

  • 유무성;황재익;김성렬
    • 한국해양공학회지
    • /
    • 제24권5호
    • /
    • pp.39-47
    • /
    • 2010
  • In this paper, a total stress analysis method for gravity quay walls is suggested. The method can evaluate the displacement of the quay walls considering the effect of excess pore pressure developed in backfill soils. This method changes the stiffness of backfill soils according to the expected magnitude of the excess pore pressure. For practical application, evaluation methods are suggested for determining the excess pore pressure ratio developed in the backfill soils and the backfill stiffness that corresponds to the excess pore pressure ratio. This method is important in practical applications because the displacement of the quay walls can be evaluated by using only the basic input properties in the total stress analysis. The applicability of the suggested method was verified by comparing the results of the analysis with the results of 1-g shaking table tests. From the comparison, it was found that the calculated displacements from the suggested method showed good agreement with the measured displacements of the quay walls. It was also found that the excess pore pressure in backfill soils is a governing influence on the dynamic behavior of quay walls.

Prediction of deflection of high strength steel fiber reinforced concrete beams and columns

  • Kara, Ilker Fatih;Dundar, Cengiz
    • Computers and Concrete
    • /
    • 제9권2호
    • /
    • pp.133-151
    • /
    • 2012
  • This paper presents an analytical procedure for the analysis of high strength steel fiber reinforced concrete members considering the cracking effect in the serviceability loading range. Modifications to a previously proposed formula for the effective moment of inertia are presented. Shear deformation effect is also taken into account in the analysis, and the variation of shear stiffness in the cracked regions of members has been considered by reduced shear stiffness model. The effect of steel fibers on the behavior of reinforced concrete members have been investigated by the developed computer program based on the aforementioned procedure. The inclusion of steel fibers into high strength concrete beams and columns enhances the effective moment of inertia and consequently reduces the deflection reinforced concrete members. The contribution of the shear deformation to the total vertical deflection of the beams is found to be lower for beams with fibers than that of beams with no fibers. Verification of the proposed procedure has been confirmed from series of reinforced concrete beam and column tests available in the literature. The analytical procedure can provide an accurate and efficient prediction of deflections of high strength steel fiber reinforced concrete members due to cracking under service loads. This procedure also forms the basis for the three dimensional analysis of frames with steel fiber reinforced concrete members.

Integral Abutment Bridge behavior under uncertain thermal and time-dependent load

  • Kim, WooSeok;Laman, Jeffrey A.
    • Structural Engineering and Mechanics
    • /
    • 제46권1호
    • /
    • pp.53-73
    • /
    • 2013
  • Prediction of prestressed concrete girder integral abutment bridge (IAB) load effect requires understanding of the inherent uncertainties as it relates to thermal loading, time-dependent effects, bridge material properties and soil properties. In addition, complex inelastic and hysteretic behavior must be considered over an extended, 75-year bridge life. The present study establishes IAB displacement and internal force statistics based on available material property and soil property statistical models and Monte Carlo simulations. Numerical models within the simulation were developed to evaluate the 75-year bridge displacements and internal forces based on 2D numerical models that were calibrated against four field monitored IABs. The considered input uncertainties include both resistance and load variables. Material variables are: (1) concrete elastic modulus; (2) backfill stiffness; and (3) lateral pile soil stiffness. Thermal, time dependent, and soil loading variables are: (1) superstructure temperature fluctuation; (2) superstructure concrete thermal expansion coefficient; (3) superstructure temperature gradient; (4) concrete creep and shrinkage; (5) bridge construction timeline; and (6) backfill pressure on backwall and abutment. IAB displacement and internal force statistics were established for: (1) bridge axial force; (2) bridge bending moment; (3) pile lateral force; (4) pile moment; (5) pile head/abutment displacement; (6) compressive stress at the top fiber at the mid-span of the exterior span; and (7) tensile stress at the bottom fiber at the mid-span of the exterior span. These established IAB displacement and internal force statistics provide a basis for future reliability-based design criteria development.

Evaluate the effect of steel, polypropylene and recycled plastic fibers on concrete properties

  • Fayed, Sabry;Mansour, Walid
    • Advances in concrete construction
    • /
    • 제10권4호
    • /
    • pp.319-332
    • /
    • 2020
  • The impacts of reinforcing concrete matrix with steel fibers, polypropylene fibers and recycled plastic fibers using different volume fractions of 0.15%, 0.5%, 1.5% and 2.5% on the compressive and tensile characteristics are experimentally investigated in the current research. Also, flexural behavior of plain concrete (PC) beams, shear performance of reinforced concrete (RC) beams and compressive characteristics of both PC and RC columns reinforced with recycled plastic fibers were studied. The experimental results showed that the steel fibers improved the splitting tensile strength of concrete higher than both the polypropylene fibers and recycled plastic fibers. The end-hooked steel fibers had a positive effect on the compressive strength of concrete while, the polypropylene fibers, the recycled plastic fibers and the rounded steel fibers had a negative impact. Compressive strength of end-hooked steel fiber specimen with volume fraction of 2.5% exhibited the highest value among all tested samples of 32.48 MPa, 21.83% higher than the control specimen. The ultimate load, stiffness, ductility and failure patterns of PC and RC beams in addition to PC and RC columns strengthened with recycled plastic fibers enhanced remarkably compared to non-strengthened elements. The maximum ultimate load and stiffness of RC column reinforced with recycled plastic fibers with 1.5% volume fraction improved by 21 and 15%, respectively compared to non-reinforced RC column.

A hybrid MC-HS model for 3D analysis of tunnelling under piled structures

  • Zidan, Ahmed F.;Ramadan, Osman M.
    • Geomechanics and Engineering
    • /
    • 제14권5호
    • /
    • pp.479-489
    • /
    • 2018
  • In this paper, a comparative study of the effects of soil modelling on the interaction between tunnelling in soft soil and adjacent piled structure is presented. Several three-dimensional finite element analyses are performed to study the deformation of pile caps and piles as well as tunnel internal forces during the construction of an underground tunnel. The soil is modelled by two material models: the simple, yet approximate Mohr Coulomb (MC) yield criterion; and the complex, but reasonable hardening soil (HS) model with hyperbolic relation between stress and strain. For the former model, two different values of the soil stiffness modulus ($E_{50}$ or $E_{ur}$) as well as two profiles of stiffness variation with depth (constant and linearly increasing) were used in attempts to improve its prediction. As these four attempts did not succeed, a hybrid representation in which the hardening soil is used for soil located at the highly-strained zones while the Mohr Coulomb model is utilized elsewhere was investigated. This hybrid representation, which is a compromise between rigorous and simple solutions yielded results that compare well with those of the hardening soil model. The compared results include pile cap movements, pile deformation, and tunnel internal forces. Problem symmetry is utilized and, therefore, one symmetric half of the soil medium, the tunnel boring machine, the face pressure, the final tunnel lining, the pile caps, and the piles are modelled in several construction phases.

PSC 바닥판의 뚫림전단강도 예측을 위한 단순트러스모델 개선 연구 (A Study on the Modified Simple Truss Model to Predict the Punching Shear Strength of PSC Deck Slabs)

  • 박우진;황훈희
    • 한국안전학회지
    • /
    • 제30권5호
    • /
    • pp.67-73
    • /
    • 2015
  • In this paper, the simple truss model was modified to predict the punching shear strength of long-span prestressed concrete (PSC) deck slabs under wheel load including the effects of transverse prestressing and long span length between girders. The strength of the compressive zone arounding punching cone was evaluated by the stiffness of inclined strut which was modified by considering aging effective modulus. The stiffness of springs which control lateral displacement of the roller supports consists of the steel reinforcement and prestressing which passed through the punching cone. Initial angle of struts was determined by the experimental observation to compensate for uncertainties in the complexities of the punching shear. The validity of computed punching shear strength by modified simple truss model was shown by comparing with experimental results and the experimental results were also compared with existing punching shear equations to determine level of predictability. The modified simple truss model appeared to better predict the punching shear strength of PSC deck slabs than other available equations. The punching shear strength, which was determined by snap-through critical load of modified simple truss model, can be used effectively to examine punching shear strength of long span PSC deck slabs.