• Title/Summary/Keyword: Stiffness Measurement

Search Result 469, Processing Time 0.017 seconds

Comparison of dynamic and static methods in the measurement of the initial stiffness of soil (동적 및 정적 실험 방법으로 평가한 지반의 초기 강성 비교)

  • Choo, Jin-Hyun;Jung, Young-Hoon;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.940-951
    • /
    • 2009
  • A comparative study on dynamic and static measurement of initial stiffness was conducted. Because soil stiffness decreases even at very small strains, the initial stiffness has been measured by dynamic tests using shear wave velocity measurement. On the other hand, due to the advance of local strain measurement, the triaxial testing device is capable of measuring the static initial stiffness. It has been known that initial stiffness measured by static triaxial tests is generally lower than that measured by dynamic tests possibly due to the limitation of static measurement of displacement at very small strains. This study presents experimental results indicating that the elastic shear moduli could be the same both in dynamic and static measurements owing to the soil anisotropy induced by anisotropic stresses.

  • PDF

Development of Measurement System for Quantitative Measurement of Cantilever in Atomic Force Microscopy (원자간격 현미경의 캔틸레버의 정량적 특성평가를 위한 계측 시스템 개발)

  • Kweon, Hyun-Kyu;Nam, Ki-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.2
    • /
    • pp.22-27
    • /
    • 2007
  • In this study, the two methods of stiffness measurement(Spring constant) of cantilever were proposed for quantitative measurement in Atomic Force Microscopy(AFM). As the 1st method for the measurement of stiffness, the probe method, which is used in the measurement of the semiconductor mechanical and electrical properties, was applied to the measurement of the cantilever. Experiments by the probe method were performed finding the resistance value of cantilever. As the results, the resistance was measured differently along with the dimension and the thickness of cantilever that determined the stiffness(spring constant) of the lever. As the 2nd method, the vibration characteristics(Dunkerley expression) is used to obtain the stiffness of the complex structure which is combined by AFM cantilever and the standard cantilever. We measured the resonant frequency from the complex structure using the micro stages and stereo microscope. As the results, we confirmed that the vibration characteristics(Dunkerley expression) is effected the micro complex structure of AFM cantilever.

  • PDF

Development of On-line Bending Stiffness Tester (2) - Lab experiment - (종이 휨강성 자동 측정방식의 개발과 그 이용 (2) - 실험실 측정 -)

  • Seo, Yung-Bum;Jung, Suk-Myun;Jung, Tae-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.4
    • /
    • pp.21-28
    • /
    • 2007
  • A simple method of on-line stiffness measurement using the wrinkling behavior of paper web between two rollers was presented. The theory and the equation were presented, and lab and mill tests were executed. We called the stiffness measured by Taber tester as 'Taber stiffness', and by tension wrinkling measurement as 'wrinkle stiffness', respectively. Lab experimental results showed Taber and wrinkle stiffness are almost equivalent. In the mill experiment, we could measure the stiffness in the wet state and in the dry state. The dry wrinkle stiffness was close to the taber stiffness, but the wet wrinkle stiffness was much lower than the corresponding taber stiffness.

Development of Adhesion Force Measurement Apparatus with High Stiffness and High Resolution (고탄성 고분해능을 갖는 응착력 측정장치의 개발)

  • Kim, Gyu-Sung;Yoon, Jun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.140-146
    • /
    • 2007
  • To understand adhesive phenomena, we need to get force curve between two surfaces. And it is said that high stiffness force analysis system is needed to get precise force curve and more information of the surfaces. Usually the stiffness of the force measurement system is under the order of 10N/m. The stiffer force measurement system, however, results in more information on the surface, because higher stiffness lead to the wider range of force curves, secondly because the force curve obtained through the stiffer one describes more precise relationship between relative tip-sample separation and interaction force. In this paper, considering for stiffness and resolution, the cantilever was designed and we made adhesion force measurement apparatus with high stiffness and high resolution, so we measured adhesive force between Ag-ball and wafer.

Development of on-line bending stiffness tester - (2) Lab experiment (종이 휨강성 자동 측정방식의 개발과 그 이용 - (2) 실험실 측정)

  • Seo, Yung-Bum;Jung, Seok-Myun;Jung, Tae-Young
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.04a
    • /
    • pp.235-250
    • /
    • 2007
  • A simple method of on-line stiffness measurement using the wrinkling behavior of paper web between rollers was presented. The theory and calculating equation were presented, and lab experiment was executed. We called the stiffness measured by Taber tester as 'Taber stiffness', and by tension wrinkling measurement as 'wrinkle stiffness', respectively, for comparison. Lab experimental results showed Taber and wrinkle stiffness are almost equivalent. We expect this method will work porperly for the on-line measurement of paper stiffness in near future.

  • PDF

Development of On-Line Bending Stiffness Tester (1) - Theoretical Background - (종이 휨강성 자동 측정방식의 개발과 그 이용(1) - 이론적 배경 -)

  • Seo Yung-Bum;Jung Tae-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.1 s.113
    • /
    • pp.21-26
    • /
    • 2006
  • A simple method of on-line stiffness measurement using the wrinkling behavior of paper web between rollers was developed. The theory and calculating equation were presented, and the theoretical maximum error associated with the equation was also presented. We called the stiffness measured by Taber tester as 'Taber stiffness', and by wrinkling behavior as 'wrinkle stiffness', respectively, for comparison. By using this method, on-line complete control of paper stiffness will be possible in near future. Special care about shear wrinkle and paper dimensional effects were addressed.

Estimation of Hysteretic Interfacial Stiffness of Contact Surfaces

  • Kim, Nohyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.3
    • /
    • pp.276-282
    • /
    • 2013
  • This paper proposes an ultrasonic method for measurement of linear and hysteretic interfacial stiffness of contacting surfaces between two steel plates subjected to nominal compression pressure. Interfacial stiffness was evaluated by the reflection and transmission coefficients obtained from three consecutive reflection waves from solid-solid surface using the shear wave. A nonlinear hysteretic spring model was proposed and used to define the quantitative interfacial stiffness of interface with the reflection and transmission coefficients. Acoustic model for 1-D wave propagation across interfaces is developed to formulate the reflection and transmission waves and to determine the linear and nonlinear hysteretic interfacial stiffness. Two identical plates are put together to form a contacting surface and pressed by bolt-fastening to measure interfacial stiffness at different states of contact pressure. It is found from experiment that the linear and hysteretic interfacial stiffness are successfully determined by the reflection and transmission coefficient at the contact surfaces through ultrasonic pulse-echo measurement.

Changes of Masticatory Muscle Tone and Stiffness According to Head Posture

  • Wang, Joongsan
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.2
    • /
    • pp.1763-1767
    • /
    • 2019
  • Background: Although previous researches have developed interventions for neck problems, headache, and temporomandibular disorder in patients with forward head posture (FHP), changes in masticatory muscle tone or stiffness as FHP worsening have not been investigated. Objective: To examine changes in masticatory muscle tone and stiffness through craniovertebral angle (CVA). Design: Cross sectional study Methods: The subjects were 21 healthy males with normal head posture. Three CVA were established for posture measurement in which the bilateral anterior temporal and masseter muscles were measured during the subjects maintained a series of postures. Results: The Right masseter muscle significantly increased in stiffness with advancing FHP (p < 0.05). No significant changes were observed in the muscle tone or stiffness of any other masticatory muscles, and no significant differences were found in bilateral masticatory muscle tone or stiffness in each measurement posture. Conclusions: This study suggests that the increased stiffness of the right masseter muscle as the FHP worsened requires consideration in physical therapy assessment and intervention.

A Development of the Test Apparatus for Measuring the Acoustic Stiffness of Resilient Mounts (마운트의 음향강성 측정을 위한 시험장치 개발)

  • 배수룡;정우진;함일배;김두기;이헌곤
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.141-148
    • /
    • 1999
  • Resilient mounting is effective measures to reduce the structure-borne noise and radiated noise for many applications. The acoustic stiffness (frequency-dependent stiffness) of resilient mounts is an important parameter required in order to model vibration isolation with high accuracy. It is general to use measurement method for obtaining acoustic stiffness of complex resilient mounts under static preload. In this paper, the principles of measuring acoustic stiffness were described and the developed test apparatus was introduced. Also, the feasibility of the test apparatus is illustrated by measurement results of a resilient mount.

  • PDF