• Title/Summary/Keyword: Stiffness Improvement

Search Result 426, Processing Time 0.035 seconds

A Study for Bearing Capacity Calculation Method of Very Soft Ground with Reinforced Surface (표층처리공법으로 개량된 초연약지반의 지지력산정방법에 관한 연구)

  • Ham, Tae-Gew;Cho, Sam-Deok;Yang, Kee-Sok;You, Seung-Kyong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.303-314
    • /
    • 2010
  • This study, as basic research which was intended to develope the surface reinforcement method using reinforcement material which is applicable to very soft ground in Korea, was aimed at proposing the design parameter for the surface ground improvement method. To that end, a wide width tensile test using geotextile, geogrid and steel bar (substitute for bamboo) and 49 kinds of the laboratory model tests were conducted. And the result the study suggested $\beta_s$, the stiffness coefficient to evaluate the stiffness effect of reinforcement materials. Then, it was also found that the stiffness coefficient, $\beta_s$ as the testing constant would be appropriate as high as 1.0, 1.1 and 1.5 for geotextile, geogrid and steel bar, respectively. And It was evaluated that the stiffness effect affecting reinforcement improvement effect would be reduced as the thickness of embeded depth increases and that RFe, the stiffness effect reduction coefficient would have positive correlation with H/B. Finally, it was confirmed that the bearing capacity gained from the method to calculate bearing capacity, which was suggested in the study, would almost correctly estimate the capacity, demonstrating the appropriateness of the proposed bearing capacity calculation method.

  • PDF

Computation of Complex Stiffness of Inflated Diaphragm in Pneumatic Springs by Using FE Codes (상용 유한요소해석 프로그램을 이용한 공압 스프링 내 다이아프램의 복소강성 산출)

  • Lee, Jeung-Hoon;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.919-925
    • /
    • 2006
  • An accurate mathematical model for complex stiffness of the pneumatic spring would be necessary for an efficient design of a pneumatic spring used in vibration isolation tables for precision instruments such as optical devices or nano-scale equipments. A diaphragm, often employed for prevention of air leakage, plays a significant role of complex stiffness element as well as the pressurized air itself Therefore, effects of the diaphragm need to be included in the dynamic model for a more faithful description of dynamic behavior of pneumatic spring. But the complex stiffness of diaphragm is difficult to predict In an analytical way, since it is a rubber membrane of complicated shape in itself. Moreover, the diaphragm should be expandable in response to pressurization inside a chamber, which makes direct measurement of complex stiffness of diaphragm extremely difficult. In our earlier research, the complex stiffness of diaphragm was indirectly measured, which was just to eliminate the theoretical stiffness of pressurized air from the measured complex stiffness of the pneumatic spring. In order to reflect complex stiffness of inflated diaphragm on the total stiffness at the initial design or design improvement stage, however. it is required to be able to predict beforehand. In this paper, how to predict the complex stiffness of inflated rubber diaphragm by commercial FE codes (e.g. ABAQUS) will be discussed and the results will be compared with the indirectly measured values.

COMPUTATION OF COMPLEX STIFFNESS OF INFLATED DIAPHRAGM IN PNEUMATIC SPRINGS BY USING FE CODES (상용 유한요소해석 프로그램을 이용한 공압 스프링 내 다이아프램의 복소강성 산출)

  • Lee, Jeung-Hoon;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.844-849
    • /
    • 2006
  • Accurate modeling of complex dynamic stiffness of the pneumatic springs is crucial for an efficient design of vibration isolation tables for precision instruments such as optical devices or nano-technology equipments. Besides pressurized air itself, diaphragm made of rubber materials, essentially employed for prevention of air leakage, plays a significant contribution to the total complex stiffness. Therefore, effects of the diaphragm should be taken care of precisely. The complex stiffness of an inflated diaphragm is difficult to predict or measure, since it is always working together with the pressurized air. In our earlier research, the complex stiffness of a diaphragm was indirectly estimated simply by subtracting stiffness of the pressurized air from measurement of the total complex stiffness for a single chamber pneumatic spring. In order to reflect dynamic stiffness of inflated diaphragm on the total stiffness at the initial design or design improvement stage, however, it is required to be able to predict beforehand. In this presentation, how to predict the complex stiffness of inflated rubber diaphragm by commercial FE codes(e.g. ABAQUS) will be discussed and the results will be compared with the indirectly measured values.

  • PDF

A Study on the Body Attachment Stiffness for the Road Noise

  • Kim Ki-Chang;Kim Chan-Mook
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1304-1312
    • /
    • 2005
  • The ride and noise characteristics of a vehicle are significantly affected by the vibration transferred to the body through the chassis mounting points in the engine and suspension. It is known that body attachment stiffness is an important factor of idle noise and road noise for NVH performance improvement. The body attachment stiffness serves as a route design aimed at isolating the vibration generated inside the car due to the exciting force of the engine or road. The test result of the body attachment stiffness is shown in the FRF curve data; the stiffness level and sensitive frequency band are recorded by the data distribution. The stiffness data is used for analyzing the parts that fail to meet the target stiffness at a pertinent frequency band. The analysis shows that the target frequency band is between 200 and 500 Hz. As a result of the comparison in a mounted suspension, the analysis data is comparable to the test data. From these results, there is a general agreement between the predicted and measured responses. This procedure makes it possible to find the weak points before a proto car is produced, and to suggest proper design guidelines in order to improve the stiffness of the body structure.

Optimization of Spindle Units Considering the Decrease of Bearing Stiffness at High Speed Revolution (고속 회전시 베어링 강성강하를 고려한 주축 유니트의 최적화)

  • Lee, Chan-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.717-723
    • /
    • 2010
  • Radial stiffness of angular contact ball bearings are decreased remarkably at high speed revolution, because the inner and outer ball contact angle with races arc changed under the ball centrifugal forces at high speed. In the past, the optimizations of spindle units were done under the assumption of unchanged bearing stiffness for the whole speed range. But the bearing stiffness is changed and the dimension of optimum spindle is also changed with speed. In the design phase, only one model of many optimum spindle models with speed should be selected. As optimization criterion, the area of transfer function at spindle nose is proposed to estimate simply and accurately improvement of dynamic characteristics in spindle units. Finally, according to many analyses of diverse spindle models with decreased bearing stiffness, the spindle with shorter bearing span is better than longer bearing span from the viewpoint of dynamic characteristics.

Improvement of Newton-Raphson Iteration Using ELS (강성등가하중을 이용한 Newton-Raphson Iteration 개선)

  • Kim, Chee-Kyeong;Hwang, Young-Chul
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.170-174
    • /
    • 2006
  • This paper presents a new nonlinear analysis algorithm which uses the equivalent nodal load for the element stiffness. The equivalent nodal load represents the influence of the stiffness change such as the addition of elements, the deletion of elements, and/or the partial change of element stiffness. The nonlinear analysis of structures using the equivalent load improves the efficiency very much because the inverse of the structural stiffness matrix, which needs a large amount of computation to calculate, is reused in each loading step. In this paper, the concept of nonlinear analysis using the equivalent load for the element stiffness is described and some numerical examples are provided to verify it.

  • PDF

Experiment characterization of the improvement of the rotational stiffness of the double-folded springs for MEMS structures (MEMS용 double-folded 스프링의 회전강성 개선 및 실험 평가)

  • Hwang I.H.;Kim C.I.;Wang S.M.;Lee J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.888-891
    • /
    • 2005
  • Compared to the simple-beam springs, double-folded springs have advantages of the linearity even at the long stroke, so that they have been widely used for optical components such as optical switches and optical attenuators. Until now only the stiffness of the double-folded springs dn the perpendicular direction of the shuttle movement has been considered for the stable operation, however, the rotational stiffness of the splings has not been researched as much. Therefore, this paper suggests the double-folded springs of the maximum rotational stiffness with the constant stiffness in the stroke direction using the reliability based topology optimization (RBTO), whose operation properties were experimentally characterized.

  • PDF

Improvement of Fire Resistance and Impact Sound Insulation Performance for Timber Framed Floor by Installation of Isolated Ceiling (분리된 천정의 설치를 통한 목구조 바닥의 내화성능 및 충격음 차단성능 향상)

  • Park, Joo-Saeng;Kim, Se-Jong;Lee, Sang-Joon
    • Journal of the Korea Furniture Society
    • /
    • v.24 no.4
    • /
    • pp.426-432
    • /
    • 2013
  • Fire resistance and impact sound insulation tests were performed for a floor assembly, of which stiffness was reinforced by shortening the span of floor joists by installing glulam beam additionally in the middle or one thirds of the original span, and which an additional ceiling component was installed apart from floor structure. By applying the isolated ceiling, timber framed floor showed 1 hour of fire resistance even in case that dead load was increased by considering cement mortar layer for radiant floor heating. Insulation performance against light and heavy impact sound was improved significantly by applying the sound absorbing layer of big mass and high elasticity in addition to the stiffness improvement and isolated ceiling.

  • PDF

A Study of Improvement on the Torsional Vibration of Input Shaft and Structural Vibration of Vehicle Using Tunable Dual Stiffness Type Clutch in Auto-transmission (자동변속기에서 2중 동조 강성형 클러치를 이용한 입력축의 비틀림 진동 및 차체 진동의 개선에 관한 연구)

  • Jung, Byung-Hwan;Hwang, Seon-Yang;Kang, Koo-Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.883-890
    • /
    • 2010
  • According to torsional vibration characteristic of a tunable dual stiffness type clutch(TDSTC) in auto-transmission, the input shaft system have occurred breakdown for the duration cycle and over-vibration happened on vehicle at specific condition. This paper introduces the improvement of the torsional vibration of input shaft and the vehicle vibration by tuning of the TDSTC.

A Study on the Comparison of Performance of PC-Slab Composite Plate Girder from the Actual Sized Experiment (실물실험을 통한 PC-Slab합성 판형교의 성능비교연구)

  • Min, Kyung-Ju;Lee, Sung-Uk;Kim, Yung-Guk;Woo, Yong-Keun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1300-1309
    • /
    • 2010
  • In the railway bridges, steel plate girder types are preferred due the high stability. Nevertheless, it has been pointed out that this type of bridge has problems such as, structural damages in the rail and girder seat, noise problem due to impact at the rail joint and excessive vibration. This vibration and/or deflection are mainly because insufficient stiffness of steel plate type of bridge. To resolve these problems, PC-Slab composite plate girder type which has simple process and economic cost, is proposed in this study. The static and dynamic experiment is performed by using the production of actual sized PC-Slab and abandoned steel plate girder. The object of this experiment is to verify the fact that girder stiffness increase and structural safety. The result of the experiment is used to analyze the effect of performance improvement of PC composite plate girder type. Using this method, economic rail maintainers, girder stiffness increase, and also speed/ride improvement even for existing rail could be expected by dynamic performance improvement. Additionally noise due to impact, deflection and vibration caused from long rails can be reduced.

  • PDF