• Title/Summary/Keyword: Stiffened plated structure

Search Result 9, Processing Time 0.018 seconds

A New Grillage Method for Analyzing Orthogonally Stiffened Plated Structures (직교 이방성으로 보강된 평판 구조물 해석을 위한 새로운 방법 연구)

  • 조규남
    • Computational Structural Engineering
    • /
    • v.2 no.2
    • /
    • pp.101-112
    • /
    • 1989
  • Development of a procedure for improved modeling of orthogonally stiffened plated grillages is the primary subject of this paper. In the method developed here a modified static condensation procedure is used to get a complete 2-dimensional grillage which represents the stiffness of the original orthogonally stiffened plated structure. The theory and numerical model are applied to a typical structure and the method has been demonstrated to work well for the analysis of orthogonally stiffened plate structures.

  • PDF

Numerical Investigation of Residual Strength of Steel Stiffened Panel Exposed to Hydrocarbon Fire

  • Kim, Jeong Hwan;Baeg, Dae Yu;Seo, Jung Kwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.203-215
    • /
    • 2021
  • Current industrial practices and approaches are simplified and do not describe the actual behavior of plated elements of offshore topside structures for safety design due to fires. Therefore, it is better to make up for the defective methods with integrated fire safety design methods based on fire resistance characteristics such as residual strength capacity. This study numerically investigates the residual strength of steel stiffened panels exposed to hydrocarbon jet fire. A series of nonlinear finite element analyses (FEAs) were carried out with varying probabilistic selected exposures in terms of the jet fire location, side, area, and duration. These were used to assess the effects of exposed fire on the residual strength of a steel stiffened panel on a ship-shaped offshore structure. A probabilistic approach with a feasible fire location was used to determine credible fire scenarios in association with thermal structural responses. Heat transfer analysis was performed to obtain the steel temperature, and then the residual strength was obtained for the credible fire scenarios under compressive axial loading using nonlinear FEA code. The results were used to derive closed-form expressions to predict the residual strength of steel stiffened panels with various exposure to jet fire characteristics. The results could be used to assess the sustainability of structures at risk of exposure to fire accidents in offshore installations.

Study on Stiffened-Plate Structure Response in Marine Nuclear Reactor Operation Environment

  • Han Koo Jeong;Soo Hyoung Kim;Seon Pyoung Hwang
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.205-214
    • /
    • 2023
  • As the regulations on greenhouse gas emissions at sea become strict, efforts are being made to minimize environmental pollutants emitted from fossil fuels used by ships. Considering the large sizes of ships in conjunction with securing stable supplies of environment-friendly energy, interest in nuclear energy to power ships has been increasing. In this study, the neutron irradiation that occurs during the nuclear reactor operation and its effect on the structural responses of the stiffened-plate structures are investigated. This is done by changing the material properties of DH36 steel according to the research findings on the neutron-irradiated steels and then performing the structural response analyses of the structures using analytical and finite-element numerical solutions. Results reveal the influence of neutron irradiation on the structural responses of the structures. It is shown that both the strength and stiffness of the structures are affected by the neutron-irradiation phenomenon as their maximum flexural stress and deflection are increased with the increase in the amount of neutron irradiation. This implies that strength and stiffness need to be considered in the design of ships equipped with marine nuclear reactors.

Estimation of Buckling and Plastic Behaviour according to the Analysis Model of the Stiffened Plate (보강판의 해석모델에 따른 좌굴 및 소성거동 평가)

  • Ko, Jae-Yong;Oh, Young-Cheol;Park, Joo-Shin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.271-279
    • /
    • 2007
  • Ship structures are basically an assembly of plate elements and estimation load-carrying capacity or the ultimate strength is one of the most important criterion for estimated safety assessment and rational design on the ship structure. Also, Structural elements making up ship plated structures do not work separately against external load. One of the critical collapse events of a ship structure is the occurrence of overall buckling and plastic collapse of deck or bottom structure subjected to longitudinal bending. So, the deck and the bottom plates are reinforced by a number af longitudinal stiffeners to increase their strength and load-carrying capacity. For a rational design avoiding such a sudden collapse, it is very important to know the buckling and plastic behaviour or collapse pattern of the stiffened plate under axial compression. In this present study, to investigate effect af modeling range, the finite element method are used and their results are compared varying the analysis ranges. When making the FEA model, six types of structural modeling are adopted varying the cross section of stiffener. In the present paper, a series of FEM elastoplastic large deflection analyses is performed on a stiffened plate with fiat-bar, angle-bar and tee-bar stiffeners. When the applied axial loading, the influences of cross-sectional geometries on collapse behaviour are discussed. The purpose of the present study is examined to numerically calculate the characteristics of buckling and ultimate strength behavior according to the analysis method of ship's stiffened plate subject to axial loading.

Structural Assessment of the Optimal Section Shape of FRP Based Stiffeners (FRP 보강재의 최적 단면 형상 결정 및 평가에 관한 연구)

  • Jeong, Han-Koo;Nho, In-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.435-444
    • /
    • 2011
  • This paper deals with the structural assessment of metallic and non-metallic stiffened/monocoque plated marine structures under a lateral pressure load to identify appropriate combination of material and section configuration, especially at the preliminary marine structural design stage. A generic rectangular plated structure is exemplified from the metallic superstructure of a marine vessel and its structural topology is varied for the structural assessment. In total 13 different structural topologies are proposed and assessed using appropriate elastic solutions in conjunction with a set of stress and deflection limits obtained from practice. The geometry dimensions and weights of the structural topologies are calculated, and subsequently, the costs of the materials used in the structural topologies are reviewed to discuss the cost-effectiveness of the materials. Finally, conclusions are made with the aim of suggesting suitable structural topology for the marine structural member considered in this paper.

ALPS Ultimate limit state assessment of ships and offshore structure (선박해양구조물의 최종강도 해석용 프로그램 ALPS 적용사례)

  • Seo Jung-Kwan;Paik Jeom-Kee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.28-35
    • /
    • 2005
  • It is now well recognized that the ultimate limit state approach is a much better basis for design and strength assessment of ships and offshore structures since it is difficult to determine the realistic margin of safety using the traditional allowable working stress approach on the basis of linear elastic method solutions together with buckling strengthchecks adjusted by a simple plasticity correction. This paper outlines ALPS theory for ultimate limit state assessment of ship structures. ALPS is a computer software which stands for nonlinear Analysis of Large Plated Structures. Application examples of ALPS program to ultimate limit state assessment of plates, stiffened panels and ship hull girders are presented. A benchmark study is made by a comparison with the ALPS solutions with other methods including class rule formulae, nonlinear finite element methods and experimental results. Future trends on ultimate limit state assessment of ship structures are addresse[1]

  • PDF

A Study on the Ultimate Strength Behaviour of Stiffened Plate according to the Stiffener Section

  • Ko Jae-Yogn;Park Joo-Shin;Park Sung-Hyeon
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.05b
    • /
    • pp.113-119
    • /
    • 2004
  • A steel plated is typically composed of plate panels. The overall failure of the structure is certainly affected and can be governed by the bulking and plastic collapse of these individual members In the ultimate limit state design. therefore. a primary task is to accurately calculate the budding and plastic collapse strength of such structural members. Structural elements making up steel palated structures do not work separately. resulting in high degree of redundancy and complexity in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed, simplifications or idealizations must essentially be made considering the accuracy need and degree of complexity of the analysis to be used Generally the more complex the analysis the greater is the accuracy that may be obtained. The aim of this study is the investigation of the effect of the tripping behaviour including section characteristic for a plate under uniaxial compression.

  • PDF

The Development of Structural Test Facility for the Strength Assessment of CFRP Marine Leisure Boat (탄소섬유강화플라스틱 재료 레저선박의 구조강도 평가를 위한 시험설비 구축과 운용에 관한 연구)

  • Jeong, Han Koo;Zhang, Yang;Yum, Deuk Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.312-320
    • /
    • 2017
  • This paper deals with the development of structural test facility for the strength assessment of marine leisure boat built from carbon fiber reinforced plastics (CFRP) materials. The structural test facility consists of test jig, load application and control system, and data acquisition system. Test jig, and load application and control system are designed to accommodate various size and short span to depth ratios of single skin, top-hat stiffened and sandwich constructions in plated structural format such as square and rectangular shapes. A lateral pressure load, typical and important applied load condition to the plates of the hull structure for marine leisure boat, is simulated by employing a number of hydraulic cylinders operated automatically and manually. To examine and operate the structural test facility, five carbon/epoxy based FRP square plates having the test section area of $1m^2$, which are part of CFRP marine leisure boat hull, are prepared and they are subjected to monotonically increasing lateral pressure loads. In the test preparation, considering the symmetry of the plates geometry, various strain gauges and linear variable displacement transformer are used in conjunction with data acquisition system utilizing LabVIEW. From the test observation, the responses of the CFRP hull structure of marine leisure boat are understood by obtaining load to deflection and strain to load curves.

A Study on the Tripping Behaviour of Stiffened Plate according to the Stiffener type (Stiffener형상에 따른 보강판의 트리핑거동에 관한 연구)

  • 고재용;박주신;박성현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.89-94
    • /
    • 2004
  • A steel plated is typically composed of plate panels. The overall failure of the structure is certainly affected and can be governed by the bulking and plastic collapse of these individual members. In the ultimate limit state design, therefore, a primary task is to accurately calculate the buckling and plastic collapse strength of such structural members. Structural elements making up steel palated structures do not work separately, resulting in high degree of redundancy and complexity in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed, simplifications or idealizations must essentially be made considering the accuracy need and degree of complexity of the analysis to be used. Generally the more complex the analysis the greater is the accuracy that may be obtained. The aim of this study is the investigation of the effect of the tripping behaviour including section characteristic for a plate under uniaxial compression. For this purpose of study, in used elasto-plasticity deformation FEA method are used for this study.

  • PDF