• Title/Summary/Keyword: Stewart platform manipulator

Search Result 36, Processing Time 0.024 seconds

The Estimation for the Forward Kinematic Solution of Stewart Platform Using the Neural Network (신경망 기법을 이용한 스튜어트 플랫폼의 순기구학 추정)

  • Lee, Hyung-Sang;Han, Myung-Chul;Lee, Min-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.186-192
    • /
    • 1999
  • This paper introduces a study of a method for the forward kinematic analysis, which finds the 6 DOF motions and velocities from the given six cylinder lengths in the Stewart platform. From the viewpoints of kinematics, the solution for the inverse kinematic is easily found by using the vectors of the links which are composed of the joint coordinates in base and plate frames, to act contrary to the serial manipulator, but forward kinematic is difficult because of the nonlinearity and complexity of the Stewart platform dynamic equation with the multi-solutions. Hence we, first in this study, introduce the linear estimator using the Luenberger's observer, and the estimator using the nonlinear measured model for the forward kinematic solutions. But it is difficult to find the parameter of the design for the estimation gain or to select the estimation gain and the constant steady state error exists. So this study suggests the estimator with the estimation gain to be learned by the neural network with the structure of multi-perceptron and the learning method using back propagation and shows the estimation performance using the simulation.

  • PDF

Friction Force Compensation for Actuators of a Parallel Manipulator Using Gravitational Force (중력을 이용한 병렬형 머니퓰레이터 구동부의 마찰력 보상)

  • Lee Se-Han;Song Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.609-614
    • /
    • 2005
  • Parallel manipulators have been used for a variety of applications, including the motion simulators and mechanism for precise machining. Since the ball screws used for linear motion of legs of the Stewart-Gough type parallel manipulator provide wider contact areas than revolute joints, parallel manipulators are usually more affected by frictional forces than serial manipulators. In this research, the method for detecting the frictional forces arising in the parallel manipulator using the gravitational force is proposed. First, the reference trajectories are computed from the dynamic model of the parallel manipulator assuming that it is subject to only the gravitational force without friction. When the parallel manipulator is controlled so that the platform follows the computed reference trajectory, this control force for each leg is equal to the friction force arising in each leg. It is shown that control performance can be improved when the friction compensation based on this information is added to the controller for position control of the moving plate of a parallel manipulator.

On the Development of a Testbed for Force-Teflecting Teleoperation (힘 반향 원격제어 모의시험기 개발에 관한 연구)

  • 김상범;최용제;김승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1708-1713
    • /
    • 1997
  • In teleoperation of a manipulator, kinesthetic feedback can take an essential role in the sense that it provides an operator with more realistic information. In this paper, in order to implement the concept of kinesthetic feedback, force mapping algorithms based on screw theory have been presented. In the development of such algorithms, the virtual environment has been modeled usign a spring and dampers, and the forces caused by hitting the joint limits of a conrtolled manipulator were considered. Finally, some experimental results of force mapping algorithm have been presented.

  • PDF

평행기구 머니플레이터의 작업공간에 대한 연구

  • 정판규;이민기;최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.765-768
    • /
    • 1995
  • A double parallel manipulator has only two or three links in each parallel mechanism. this reduces link interferences so that we expect a large workspace. To prove this property, this paper analyzes the workspace of a double parallel manipulator and compare it with that of a Stewart Platform. the analysis is separately conducted in a positional and an orientational division. For each, we obtain the workspace accrding to the ranges of lengths of links and show the volume in a cartesian coordinate or the angular ranges in yaw and pitch motions.

  • PDF

Development of 6 DOF Positioning Manipulator Using Closed Loop Structure and Its Kinematic Analysis (폐루프 구조를 가지는 6 자유도 머니퓰레이터의 개발 및 기구학적 해석)

  • 김경찬;우춘규;김수현;곽윤근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.60-68
    • /
    • 1998
  • Parallel link manipulators have an ability of more precise positioning than serial open-loop manipulators. However. general parallel link manipulators have been restricted to the real applications since they have limited workspace due to interference among actuators. In this study, we suggest a closed-loop manipulator with 6 degrees-of-freedom and with enlarged workspace. It consists of two parts for minimizing the interference among actuators. One part is lower structure with planar 3 degrees-of-freedom and the other is upper one with spatial 3 degrees-of-freedom. Forward kinematics and inverse kinematics are solved, research about singularity points are carried out and workspace is evaluated. The comparison of workspace between Stewart platform, which is the typical parallel link manipulator, and the suggested manipulator shows that the workspace of the latter is wider than that of the former. Especially, simulation results also show that the suggested manipulator is more suitable when there needs rotation in the end-effector.

  • PDF

New Direct Kinematic Formulation of 6 D.O.F Stewart-Cough Platforms Using the Tetrahedron Approach

  • Song, Se-Kyong;Kwon, Dong-Soo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.217-223
    • /
    • 2002
  • The paper presents a single constraint equation of the direct kinematic solution of 6-dof (Stewart-Gough) platforms. Many research works have presented a single polynomial of the direct kinematics for several 6-dof platforms. However, the formulation of the polynomial has potential problems such as complicated formulation procedures and discrimination of the actual solution from all roots. This results in heavy computational burden and time-consuming task. Thus, to overcome these problems, we use a new formulation approach, called the Tetrahedron Approach, to easily derive a single constraint equation, not a polynomial one, of the direct kinematics and use two well-known numerical iterative methods to find the solution of the single constraint equation. Their performance and characteristics are investigated through a series of simulation.

Study on Kinematic Calibration Method of Stewart Platforms (스튜어트 플랫폼의 기구학적 교정기법에 관한 연구)

  • Goo, Sang-Hwa;Son, Kwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.168-172
    • /
    • 2001
  • The accuracy problem of robot manipulators has long been one of the principal concerns in robot design and control. A practical and economical way of enhancing the manipulator accuracy, without affecting its hardware, is kinematic calibration. In this paper an effective and practical method is presented for kinematic calibration of Stewart platforms. In our method differential errors in kinematical parameters are linearly related to differential errors in the platform pose, expressed through the forward kinematics. The algorithm is tested using simulated measurement in which measurement noise is included.

  • PDF

Manipulability Analysis of a New Parallel Rolling Mill Based upon Two Stewart Platforms (두 개의 스튜어트 플랫폼을 이용한 병렬형 신 압연기의 조작성 해석)

  • 이준호;홍금식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.925-936
    • /
    • 2003
  • The manipulability analysis of the parallel-type rolling mill proposed in Hong et al. [1] is re-visited. The parallel rolling mill uses two Stewart platforms in opposite direction for the generation of 6 degree-of-freedom motions of each roll. The objective of this new parallel rolling mill is to permit an integrated control of the strip thickness, strip shape, pair crossing angle, uniform wear of rolls, and tension of the strip. New forward/inverse kinematics problems, in contrast with [1], are formulated. The forward kinematics problem is defined as the problem of finding the roll-gap and the pair-crossing angle of two work rolls for given lengths of twelve legs. On the other hand, the inverse kinematics problem is defined as the problem of finding the lengths of twelve legs when the roll-gap, the pair-crossing angle, and the position and orientation of one work roll are given. The method of manipulability analysis used in this paper follows the spirit of [1]. But, because the rolling force and moment exerted from both upper and lower rolls have been included in the manipulability analysis, more accurate results than the use of a single platform can be achieved. Two. kinematic parameters, the radius of the base and the angle between two neighboring joints, are optimally designed by maximizing the global manipulability measure in the entire workspace.

Forward Kinematics Analysis of a Parallel Manipulator Using Neural Network (MEURAL NETWORK을 이용한 병렬매니플레이터의 순기구학 해석)

  • 이제섭;최병오;조택동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.224-228
    • /
    • 2000
  • In this paper, the kinematics of the new type of parallel manipulator is studied, and neural network is applied to solve the forward kinematics problem. The parallel manipulator, called a Stewart platform, has an easy and unique solution about the inverse kinematics, however the forward kinematics is difficult to get the solution because of the lack of an efficient algorithm due to its highly nonlinearity. This paper proposes the neural network scheme as an alternative Newton-Raphson method. The neural network is found to improve its accuracy by adjusting the offset of the result obtained.

  • PDF

A study on the design and characteristics of kinematics of 6 degree-of-freedom manipulators (6자유도 조작장치의 설계와 기구학적 특성에 관한 연구)

  • Kim, Jeoung-Tae;Kim, Moon-saeng
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.467-475
    • /
    • 1998
  • The Six Degree-of-Freedom manipulators are generally operated by linear actuators which are hydraulic cylinder, pneumatic cylinder, ball-screw. But these actuators are not adequate to have a wide work-space, and furthermore some of them have a self-locking property. Therfore, we have designed a new manipulator which fully overcomes these demerits. The new manipulating system consists of 6 DC-motors to generate operation forces and 6 position transducers to feedback displacement signals. This paper presents an overview of the design and characteristics of 6 Degree-of-Freedom force feedback manipulators for vitual reality implementation. we can operate Six Degree-of-Freedom manipulator with six motors and six potentiometers.