• 제목/요약/키워드: Stevin

검색결과 7건 처리시간 0.02초

Stevin의 '소수'의 수학사적 의의와 수학교육적 함의 (Historical Significance and Didactical Implications of Stevin's )

  • 장혜원
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제21권2호
    • /
    • pp.121-134
    • /
    • 2011
  • 소수는 자연수와의 유사성 덕분에 교수-학습시 용이함과 곤란함을 동시에 지니는 초등 수학의 지도 내용이다. 소수의 창시자로 언급되는 Stevin과 소수 개념을 소개한 그의 저서 '소수(La Disme)'는 소수의 역사에서 빼놓을 수 없는 수학자이고 수학책이다. 그러나 대부분의 수학적 개념들의 발달 과정과 마찬가지로 소수 개념에 대한 인식 및 사용은 Stevin 이전 시대에 이미 있어 왔다. 본 연구에서는 그럼에도 불구하고 Stevin이 소수의 창시자로 언급되는 이유를 '소수'가 수학사에서 지니는 의미와 관련하여 고찰하였다. 구체적으로 표기적 측면, 책의 전개 방식, 개념적 혁명, 실용적 목적 등의 측면에서 의의를 찾을 수 있었다. 그리고 책의 명성에 비해 원전의 상세한 내용은 잘 알려져 있지 않은 <소수>에 대한 상세한 검토를 통해 초등수학교육에서 소수가 지도되는 방법과 관련한 몇 가지 시사점을 논의하였다.

  • PDF

시몬 스테빈(Simon Stevin)의 십진 소수체계 : 기하학과 산수의 본격적인 융합 시도 (Simon Stevin's Decimal Fraction System : An Effort for the Unification of Geometry and Arithmetic)

  • 정원
    • 한국수학사학회지
    • /
    • 제22권1호
    • /
    • pp.41-52
    • /
    • 2009
  • 1583년 네덜란드의 수학자 시몬 스테빈은 그의 대표작 "십분의 일" (De Thiende)을 출판했다. 이 책에서 스테빈은 모든 수를 동일하게 표현할 수 있는 십진 소수체계를 최초로 제안했다. 이 논문에서는 스테빈이 명시적 목표와 숨겨진 목표를 가지고 새로운 체계를 제안했음을 주장할 것이다. 명시적 목표는 실용 수학자들이 원활하게 사용하기를 바란다는 것이었다. 반면 "십분의 일"에서는 명확히 드러나지 않지만 그의 다른 저술들을 통해 파악되는 숨겨진 목표는 16세기까지 영향을 미치던 아리스토텔레스적인 불연속적인 수와 연속적인 크기의 구분을 철폐하려는 것이었다.

  • PDF

시몬 스테빈의 등각항로 연구와 등각나선곡선 : 생존을 위한 지식이자 새로운 발견의 출발점이 되었던 항해술 (Simon Stevin's Works on Loxodrome and Equiangular Spiral Curve: Navigation as a Starting Point of Mathematical Discovery)

  • 정원
    • 한국수학사학회지
    • /
    • 제28권5호
    • /
    • pp.249-262
    • /
    • 2015
  • Simon Stevin, a mathematician active in the Netherlands in early seventeenth century, parlayed his mathematical talents into improving navigation skills. In 1605, he introduced a technique of calculating the distance of loxodrome employed in long-distance voyages in his book, Navigation. He explained how to calculate distance by 8 different angles, and even depicted how to make a copper loxodrome model for navigators. Particularly, Stevin clarified in the 7th copper loxodrome model on the unique features of equiangular spiral curve that keeps spinning and gradually accesses from the vicinity to the center. These findings predate those of Descartes on equiangular spiral curve by more than 30 years. Navigation, a branch of actual mathematics devised for the survival of sailors on the bosom of the ocean, was also the first step to the discovery of new mathematical object.

소수의 역사적 기원과 의의

  • 강흥규;변희현
    • 한국수학사학회지
    • /
    • 제16권3호
    • /
    • pp.69-76
    • /
    • 2003
  • In this article, We explained the historical origin and significance of decimal fraction, and draw some educational implications based on that. In general, it is accepted that decimal fraction was first invented by a Belgian man, Simon Stevin(1548-1620). In short, the idea of infinite decimal fraction refers to the ratio of the whole quantity to a unit. Stevin's idea of decimal fraction is significant for the history of mathematics in that it broke through the limit of Greek mathematics which separated discrete quantity from continuous quantity, and number from magnitude, and it became the origin of modern number concept. H. Eves chose the invention of decimal fraction as one of the "Great moments of mathematics."The method of teaching decimal fraction in our school mathematics tends to emphasize the computational aspect of decimal fraction too much and ignore the conceptual aspect of it. In teaching decimal fraction, like all the other areas of mathematics, the conceptual aspect should be emphasized as much as the computational aspect.al aspect.

  • PDF

무리수의 개념적 측면을 강조한 교육방안: '통약불가능성'을 통한 무리수 고찰 (Teaching and Learning Irrational Number with Its Conceptual Aspects Stressed : Consideration of Irrational Number through the Conception of 'Incommensurability')

  • 변희현;박선용
    • 대한수학교육학회지:학교수학
    • /
    • 제4권4호
    • /
    • pp.643-655
    • /
    • 2002
  • In this paper we emphasize the introduction of ‘incommensurability’ on the teaching and learning the irrational number because we think of the origin of number as ‘ratio’. According to Greek classification of continuity as a ‘never ending’ divisibility, discrete number and continuous magnitude belong to another classes. That is, those components were dealt with respectively in category of arithmetic and that of geometry. But the comparison between magnitudes in terms of their ratios took the opportunity to relate ratios of magnitudes with numerical ratios. And at last Stevin coped with discrete and continuous quantity at the same time, using his instrumental decimal notation. We pay attention to the fact that Stevin constructed his number conception in reflecting the practice of measurement : He substituted ‘subdivision of units’ for ‘divisibility of quantities’. Number was the result of such a reflective abstraction. In other words, number was invented by regulation of measurement. Therefore, we suggest decimal representation from the point of measurement, considering the foregoing historical development of number. From the perspective that the conception of real number originated from measurement of ‘continuum’ and infinite decimals played a significant role in the ‘representation’ of measurement, decimal expression of real number should be introduced through contexts of measurement instead of being introduced as a result of algorithm.

  • PDF

무한소수 기호: 불투명성과 투명성 (The Infinite Decimal Representation: Its Opaqueness and Transparency)

  • 이지현
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제24권4호
    • /
    • pp.595-605
    • /
    • 2014
  • 소수점 아래 0에서 9까지의 임의의 숫자가 무한히 나열되는 무한소수는 '소수점 아래끝자리까지의 모든 숫자를 명확하게 알 수 없는 모호한 수'라는 불투명성을 가지고 있다. 이 논문에서는 이와 같은 불투명성을 야기하는 무한소수 기호로부터 어떻게 연속적인 수를 창조할 수 있었는지를 분석하였다. 무한소수 기호의 완비성 공리에 대한 투명성에 의존하여, 실수 개념이 엄밀하게 형식화되기 이전에도 수학자들은 실수 개념을 다룰 수 있었다. 이 논문의 수학적 역사적 분석은 무한소수에 의존하여 실수 개념을 전개하는 학교수학의 접근과, 완비순서체로서의 실수의 형식적 정의를 다루는 대학수학의 접근 사이에서 야기될 수 있는 이중단절의 문제를 극복하는 데 도움이 될 수 있을 것이다.

  • PDF

초등학교 수학교과서에서의 양(量)의 계산에 대한 연구 (A Study on Quantity Calculus in Elementary Mathematics Textbooks)

  • 정은실
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제20권4호
    • /
    • pp.445-458
    • /
    • 2010
  • 이 연구는 양 개념의 발달 과정을 알아보고 초등학교에서 양의 계산을 어떤 방식으로 다루는지를 분석함으로써 교육과정이나 교과서의 구성에 대한 시사점을 찾아보려는 것이다. 이산량과 연속량의 이원론에 근거한 유클리드의 수와 양의 구분은 이후 수학자에게 큰 영향을 미치다가 스테빈에 의해 극복되었다. 양의 덧셈과 뺄셈은 오래전부터 시행되어 왔지만, 양의 곱셈과 나눗셈은 수학계에서 될 수 있는 대로 피하려고 하였다. 그러나 자연과학계에서는 전부터 물리량의 계산을 허용하여왔고, 물리량 체계를 모델화한 대수 구조를 만들어 양의 곱셈이나 나눗셈을 이론적으로 정당화하였다. 교육과정과 교과서를 조사해 본 결과 우리나라 초등학교 수학과에서는 다른 나라와 비교하여 양의 계산 지도를 등한시하고 있음이 드러났다. 앞으로 이에 대해 충분한 논의를 하여 우리나라의 교육과정에서도 양에 대해 좀 더 적극적으로 지도할 수 있도록 명시하고, 현재 삭제된 내포량도 수학과에서 다룰 수 있도록 해야 할 것이다. 문장제도 실생활 관련 문제를 많이 제시하여 자연스럽게 양의 계산을 할 수 있도록 해야 하며, 문장제를 해결하는 과정에서 수로 된 식만 쓸 것이 아니라 단위를 붙인 식을 써서 양적인 추론에 도움을 줄 수 있도록 하는 문제에 대해서도 논의할 필요가 있다.

  • PDF