• Title/Summary/Keyword: Sterol regulatory element-binding protein

Search Result 159, Processing Time 0.027 seconds

SAFB1, an RBMX-binding protein, is a newly identified regulator of hepatic SREBP-1c gene

  • Omura, Yasushi;Nishio, Yoshihiko;Takemoto, Tadashi;Ikeuchi, Chikako;Sekine, Osamu;Morino, Katsutaro;Maeno, Yasuhiro;Obata, Toshiyuki;Ugi, Satoshi;Maegawa, Hiroshi;Kimura, Hiroshi;Kashiwagi, Atsunori
    • BMB Reports
    • /
    • v.42 no.4
    • /
    • pp.232-237
    • /
    • 2009
  • Sterol regulatory element-binding protein (SREBP)-1c plays a crucial role in the regulation of lipogenic enzymes in the liver. We previously reported that an X-chromosome-linked RNA binding motif (RBMX) regulates the promoter activity of Srebp-1c. However, still unknown was how it regulates the gene expression. To elucidate this mechanism, we screened the cDNA library from mouse liver by yeast two-hybrid assay using RBMX as bait and identified scaffold attachment factor B1 (SAFB1). Immunoprecipitation assay demonstrated binding of SAFB1 to RBMX. Chromatin immunoprecipitation assay showed binding of both SAFB1 and RBMX to the upstream region of Srebp-1c gene. RNA interference of Safb1 reduced the basal and RBMX-induced Srebp-1c promoter activities, resulting in reduced Srebp-1c gene expression. The effect of SAFB1 overexpression on Srebp-1c promoter was found only in the presence of RBMX. These results indicate a major role for SAFB1 in the activation of Srebp-1c through its interaction with RBMX.

Effects of Kisspeptin-10 on Lipid Metabolism in Cultured Chicken Hepatocytes

  • Wu, J.;Fu, W.;Huang, Y.;Ni, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1229-1236
    • /
    • 2012
  • Our previous studies showed that kisspeptin-10 (Kp-10) injected in vivo can markedly increase lipid anabolism in liver of quails. In order to investigate the direct effect of Kp-10 on lipid metabolism of hepatocytes in birds, cells were separated from embryos livers and cultured in vitro with 0, 100 and 1,000 nM Kp-10, respectively. The results showed that after 24 h treatment, cells viability was not affected by 100 nM Kp-10, but showed a mild decrease with 1,000 nM Kp-10 compared to the control cells. Based on the results of the cell viability, 100 nM dosage of Kp-10 was selected for the further study and analysis. Compared with control cells, total cholesterol (Tch) contents in 100 nM treated cells were increased by 51.23%, but did not reach statistical significance, while the level of triglyceride (TG), high density of lipoprotein-cholesterol (HDL-C) and low density of lipoprotein-cholesterol (LDL-C) were significantly increased. Real-time PCR results showed that ApoVLDL-II mRNA expression had a tendency to increase, genes including sterol regulatory element-binding protein-1 (SREBP-1), acetyl coenzyme A carboxylase ${\alpha}$ ($ACC{\alpha}$), carnitine palmitoyltransferase 1 (CPT1), 3-hydroxyl-3-methylglutaryl-coenzyme A reductases (HMGCR) and stearyl coenzyme A dehydrogenase-1 (SCD1) mRNA in hepatocytes were significantly down-regulated by 100 nM Kp-10. However, contrary to its gene expression, SREBP-1 protein expression was significantly up-regulated by 100 nM Kp-10. Some of the significant correlations in mRNA expression were found between genes encoding hepatic factors or enzymes involved in lipid metabolism in liver of birds. These results indicate that Kp-10 stimulates lipid synthesis directly in primary cultured hepatocytes of chickens.

Protective Effect of Isoliquiritigenin against Ethanol-Induced Hepatic Steatosis by Regulating the SIRT1-AMPK Pathway

  • Na, Ann-Yae;Yang, Eun-Ju;Jeon, Ju Mi;Ki, Sung Hwan;Song, Kyung-Sik;Lee, Sangkyu
    • Toxicological Research
    • /
    • v.34 no.1
    • /
    • pp.23-29
    • /
    • 2018
  • Ethanol-induced fat accumulation, the earliest and most common response of the liver to ethanol exposure, may be involved in the pathogenesis of liver diseases. Isoliquiritigenin (ISL), an important constituent of Glycyrrhizae Radix, is a chalcone derivative that exhibits antioxidant, anti-inflammatory, and phytoestrogenic activities. However, the effect of ISL treatment on lipid accumulation in hepatocytes and alcoholic hepatitis remains unclear. Therefore, we evaluated the effect and underlying mechanism of ISL on ethanol-induced hepatic steatosis by treating AML-12 cells with 200 mM ethanol and/or ISL ($0{\sim}50{\mu}M$) for 72 hr. Lipid accumulation was assayed by oil red O staining, and the expression of sirtuin1 (SIRT1), sterol regulatory element-binding protein-1c (SREBP-1c), AMP-activated protein kinase (AMPK), and peroxisome proliferator-activated receptor alpha ($PPAR{\alpha}$) was studied by western blotting. Our results indicated that ISL treatment upregulated SIRT1 expression and downregulated SREBP-1c expression in ethanol-treated cells. Similarly, oil red O staining revealed a decrease in ethanol-induced fat accumulation upon co-treatment of ethanol-treated cells with 10, 20, and $50{\mu}M$ of ISL. These findings suggest that ISL can reduce ethanol induced-hepatic lipogenesis by activating the SIRT1-AMPK pathway and thus improve lipid metabolism in alcoholic fatty livers.

The Effects of Haedoksamul-tang on Oxidative Stress and Hyperlipidemia in LPS-induced ICR Mouse (해독사물탕(解毒四物湯)이 LPS 유도 ICR mouse의 산화스트레스 및 고지혈증에 미치는 효과)

  • Choi, Gyu-ho;Jung, Yu-sun;Shin, Hyeon-cheol
    • The Journal of Korean Medicine
    • /
    • v.37 no.1
    • /
    • pp.77-89
    • /
    • 2016
  • Objectives: The present study was conducted to examine whether Haedoksamul-tang (HS), a traditional oriental herbal medicine, have beneficail effects on anti-inflammation and dyslipidemia in lipopolysaccharide (LPS)-induced ICR mouse. Methods: Twenty four 8-week old male ICR mouse were divided into four groups: normal untreated; LPS treatment only; HS 10 mg/kg plus LPS treatment; and HS 30 mg/kg plus LPS treatment. HS was orally administered per day for 2days. Twenty-four hours after LPS injection (10 mg/kg/day, i.p.), all the mice were sacrificed, and serological changes were evaluated. The levels of nuclear factor-${\kappa}B$ (NF-${\kappa}B$), sterol regulatory element-binding transcription protein 1 (SREBP-1) activity and cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor a (TNF-a), monocyte chemotactic protein 1 (MCP-1), acetyl-CoA carboxylase a (ACCa) expression were analyzed in Western blot analysis. Results: HS inhibited oxidative stress in the liver of LPS-induced ICR mice. The LPS-induced ICR mice exhibited the increase of NF-${\kappa}B$ activity and COX-2, iNOS, TNF-a, MCP-1 expressions in the liver, while HS treatment significantly inhibited them. Moreover, The administration of HS significantly decreased the elevated serum triglyceride and down-regulated the levels of SREBP-1, ACCa in the liver of LPS-induced ICR mice. Conclusions: In conclusion, HS could have hepato-protective effects against the oxidative stress-related inflammation and abnormal lipid metabolism.

Effects of Compounds from Physalis angulata on Fatty Acid Synthesis and Glucose Metabolism in HepG2 Cells via the AMP-activated Protein Kinase Pathway

  • Hoa, Hoang Thai;Thu, Nguyen Thi;Dong, Nguyen Thuong;Oanh, Tran Thi;Hien, Tran Thi;Ha, Do Thi
    • Natural Product Sciences
    • /
    • v.26 no.3
    • /
    • pp.200-206
    • /
    • 2020
  • The ability of the total extract from Physalis angulata; three fractions after partitioning with n-hexane, ethyl acetate (TBE), and water; and four withanolides (compounds 1 - 4) to phosphorylate 5'-adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in HepG2 cells was evaluated. The TBE fraction (50 ㎍/mL) activated p-ACC and p-AMPK expression most strongly. Compounds 1 - 4 (10 μM) upregulated p-ACC expression at different levels. Compound 4 induced the most significant changes in p-AMPK expression, followed by 1 and 2. Sterol regulatory element-binding proteins (SREBPs) play a functional role in the transcriptional regulation of the lipogenic pathway, including fatty acid synthase (FAS) and ACC. The effects of compounds 2 and 4 (10 μM) on FAS and SREBP-1c expression under high glucose conditions (30 mM) in HepG2 cells were evaluated further. Both dose-dependently inhibited FAS and SREBP-1c expression as well as lipid accumulation (1 - 10 μM) were compared to high-concentration glucose control, which upregulated FAS and SREBP-1c. These results suggest that compounds 2 and 4 upregulate AMPK, suppress FAS and SREBP-1c, and have potential effects on glucose and lipid metabolism.

The Effects of Hoechunyanggyeok-san on hyperglycemia and Dyslipidemia in db/db mice (회춘양격산(回春凉膈散)이 db/db 마우스의 고혈당 및 지질대사에 미치는 효과)

  • Jang, Soo-Young;Jung, Yu-Sun;Shin, Hyeon-Cheol
    • The Journal of Internal Korean Medicine
    • /
    • v.35 no.1
    • /
    • pp.70-78
    • /
    • 2014
  • Objectives : Hoechunyanggyeok-san (HYS) is a traditional herbal medicine, which has been clinically used for treating febrile and inflammatory diseases. HYS has been reported to be a useful treatment for diabetes, atherosclerosis and hyperlipidemia in the type 1 diabetic model. However, the mechanism of the effects of HYS against hyperglycemia and hyperlipidemia is poorly understood. In the present study, we investigated the underlying mechanism of ameliorative effect of HYS on hyperglycemia and hyperlipidemia in vivo. Methods : HYS (10, 50 mg/kg/day, p.o.) was administered every day for 2 weeks to db/db mice and its effect was compared with vehicle-treated db/db mice. To confirm serum glucose and triglyceride (TG) changes, serological testing was performed. The levels of sterol regulatory element-binding protein-1 (SREBP-1) activity and Sirtuin1 (SIRT1), AMP-activated protein kinase (AMPK), and acetyl-CoA carboxylase ${\alpha}$ ($ACC{\alpha}$) expression were analyzed by western blot analysis. Results : The administration of HYS significantly decreased the elevated serum glucose and TG in db/db mice. HYS administration increased the levels of SIRT1 and AMPK expression compared with the vehicle-treated group. Moreover, HYS treatment significantly inhibited SREBP-1 activity and $ACC{\alpha}$ expression in the liver, while the vehicle-treated group exhibited their increase. Conclusions : In conclusion, HYS is suggested to have an improvement effect on hyperglycemia and hyperlipidemia by activating the SIRT1/AMPK signaling pathway and inhibiting SREBP-1.

Carcass traits, fatty acid composition, gene expression, oxidative stability and quality attributes of different muscles in Dorper lambs fed Nigella sativa seeds, Rosmarinus officinalis leaves and their combination

  • Odhaib, Kifah Jumaah;Adeyemi, Kazeem Dauda;Sazili, Awis Qurni
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1345-1357
    • /
    • 2018
  • Objective: This study examined the influence of dietary supplementation of Nigella sativa seeds, Rosmarinus officinalis leaves and their combination on carcass attributes, fatty acid (FA) composition, gene expression, lipid oxidation and physicochemical properties of longissimus dorsi (LD), semitendinosus (ST), and supraspinatus (SS) muscles in Dorper lambs. Methods: Twenty-four Dorper lambs ($18.68{\pm}0.6kg$, 4 to 5 months old) were randomly assigned to a concentrate mixture containing either, no supplement (control, T1), 1% Rosmarinus officinalis leaves (T2), 1% Nigella sativa seeds (T3), or 1% Rosmarinus officinalis leaves+1% Nigella sativa seeds (T4) on a dry matter basis. The lambs were fed the treatments with urea-treated rice straw for 90 days, slaughtered and the muscles were subjected to a 7 d postmortem chill storage. Results: The T2 lambs had greater (p<0.05) slaughter and cold carcass weights than the control lambs. Dietary supplements did not affect (p>0.05) chill loss, dressing percentage, carcass composition, intramuscular fat and muscle pH in Dorper lambs. Meat from supplemented lambs had lower (p<0.05) cooking and drip losses, shear force, lightness, and lipid oxidation and greater (p<0.05) redness compared with the control meat. The impact of dietary supplements on muscle FA varied with muscle type. Diet had no effect (p>0.05) on the expression of stearoyl-CoA desaturase and lipoprotein lipase genes in LD and ST muscles in Dorper lambs. The T2 and T3 diets up regulated the expression of AMP-activated protein kinase alpha 2 gene in LD and ST muscles and up regulated the expression of sterol regulatory element-binding protein 1 in ST muscle in Dorper lambs. Conclusion: Dietary supplementation of Nigella sativa seeds and Rosmarinus officinalis leaves had beneficial effects on meat quality in Dorper lambs.

Anti-obesity Activity of Ethanol Extract from Bitter Melon in Mice Fed High-Fat Diet

  • Yoon, Nal Ae;Park, Juyeong;Jeong, Joo Yeon;Rashidova, Nilufar;Ryu, Jinhyun;Roh, Gu Seob;Kim, Hyun Joon;Cho, Gyeong Jae;Choi, Wan Sung;Lee, Dong Hoon;Kang, Sang Soo
    • Development and Reproduction
    • /
    • v.23 no.2
    • /
    • pp.129-138
    • /
    • 2019
  • In many cases, obesity is associated with metabolic disorders. Recently, natural compounds that may be beneficial for improving obesity have received increasing attention. Bitter melon has received attention as a diabetes treatment. $NAD^+$-dependent deacetylase (Sirtuin 1, SIRT1) has emerged as a novel therapeutic target for metabolic diseases. In this study, ethanol extract of bitter melon (BME) suppressed adipocyte differentiation and significantly increased the expression of SIRT1 in fully differentiated 3T3-L1 cells. Moreover, it enhanced the activation of AMP-activated protein kinase (AMPK). In high-fat diet (HFD)-fed induced-obesity mice, BME suppressed HFD-induced increases in body weight and white adipose tissue (WAT) weight. BME also increased the expression of SIRT1 and suppressed peroxisome proliferator-activated receptor and sterol regulatory element binding protein 1 expressions of WAT from HFD-fed mice. These findings suggest that BME prevents obesity by activating the SIRT1 and AMPK pathway and that it may be a useful dietary supplement for preventing obesity.

Elevated thyroid hormones caused by high concentrate diets participate in hepatic metabolic disorders in dairy cows

  • Chen, Qu;Wu, Chen;Yao, Zhihao;Cai, Liuping;Ni, Yingdong;Mao, Shengyong
    • Animal Bioscience
    • /
    • v.35 no.8
    • /
    • pp.1184-1194
    • /
    • 2022
  • Objective: High concentrate diets are widely used to satisfy high-yielding dairy cows; however, long-term feeding of high concentrate diets can cause subacute ruminal acidosis (SARA). The endocrine disturbance is one of the important reasons for metabolic disorders caused by SARA. However, there is no current report about thyroid hormones involved in liver metabolic disorders induced by a high concentrate diet. Methods: In this study, 12 mid-lactating dairy cows were randomly assigned to HC (high concentrate) group (60% concentrate of dry matter, n = 6) and LC (low concentrate) group (40% concentrate of dry matter, n = 6). All cows were slaughtered on the 21st day, and the samples of blood and liver were collected to analyze the blood biochemistry, histological changes, thyroid hormones, and the expression of genes and proteins. Results: Compared with LC group, HC group showed decreased serum triglyceride, free fatty acid, total cholesterol, low-density lipoprotein cholesterol, increased hepatic glycogen, and glucose. For glucose metabolism, the gene and protein expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase 1 in the liver were significantly up-regulated in HC group. For lipid metabolism, the expression of sterol regulatory element-binding protein 1, long-chain acyl-CoA synthetase 1, and fatty acid synthase in the liver was decreased in HC group, whereas carnitine palmitoyltransferase 1α and peroxisome proliferator activated receptor α were increased. Serum triiodothyronine, thyroxin, free triiodothyronine (FT3), and hepatic FT3 increased in HC group, accompanied by increased expression of thyroid hormone receptor (THR) in the liver. Conclusion: Taken together, thyroid hormones may increase hepatic gluconeogenesis, β-oxidation and reduce fatty acid synthesis through the THR pathway to participate in the metabolic disorders caused by a high concentrate diet.

Protective effects against alcoholic liver damage: potential of herbal juice (HJ), blend of Zingiber officinale Roscoe and Pueraria lobata Ohwi extracts

  • Young Yun Jung;You Yeon Choi;Woong Mo Yang;Kwang Seok Ahn
    • Journal of Convergence Korean Medicine
    • /
    • v.5 no.1
    • /
    • pp.45-54
    • /
    • 2023
  • Objectives : Alcohol-induced liver disease advances as to reactive oxygen species (ROS) and cellular lipid peroxidation increase. We examined the hepatoprotective effects of Zingiber officinale Roscoe rhizome extract (ZR), Pueraria lobata Ohwi flower extracts (PF), and a newly developed herbal juice (HJ), which was a combination of ZR and PF extracts, against ethanol-induced hepatotoxicity. Methods: The study utilized the human hepatoma cell line HepG2 cells to validate the hepatoprotective effect of HJ (50~200 ㎍/mL) against ethanol (EtOH, 700 mM)-induced liver damage. Results: HJ effectively reduced the protein expression of sterol regulatory element-binding transcription factor 1, adiponectin, and AMP-activated protein kinase in EtOH-induced HepG2 cells. The levels of ROS, total cholesterol, and triglycerides, which are the result of various synthesis and lipogenesis processes induced by EtOH in the liver, were reduced by HJ. Furthermore, the activities of alcohol dehydrogenase and aldehyde dehydrogenase, enzymes linked to alcohol degradation, were more effectively downregulated by HJ treatment compared to treatment with ZR and PF alone, all without causing cytotoxic effects. Conclusions: HJ protects the liver by inhibiting EtOH-induced lipogenesis, lowering ROS generation, and improving alcohol degradation, which is more effective than ZR and PF alone. Further, in vivo experiments can offer additional evidence regarding the effectiveness, safety, and underlying mechanism of action of HJ.

  • PDF