• Title/Summary/Keyword: Stern Wave

Search Result 79, Processing Time 0.022 seconds

Bow Wave Breaking and Viscous Interaction of Stern Wave

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.448-455
    • /
    • 2000
  • The bow wave breaking and the viscous interaction of stern wave are studied by simulating the free-surface flows. The Navier-Stokes equation is solved by a finite difference method in which the body-fitted coordinate system, the wall function and the triple-grid system are invoked. After validation, the calculations are extended to turbulent flows. The wave elevation at the Reynolds number of $10^4$ is much less than that at $10^6$ although the Froude number is the same. The numerical appearance of the sub-breaking waves is qualitatively supported by experimental observation. They are also applied to study the stern flow of S-103 for which extensive experimental data are available. Although the interaction between separation and the stern wave generation are not yet clear, the effects of the bow wave on the development of the boundary layer flows are concluded to be significant.

  • PDF

Topological View of Viscous Flow behind Transom Stern (트랜섬 선미 후방의 점성 유동장 Topology 관찰)

  • Kim, Wu-Joan;Park, Il-Ryong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.322-329
    • /
    • 2005
  • Viscous flows behind transom stern are analyzed based on CFD simulation results. Stern wave pattern is often complicated due to the abrupt change of stern surface curvature and flow separation at transom. When a ship advances at high speed, whole transom stern is exposed out of water, resulting in the so-called 'dry transom'. However, in the moderate speed regime, stern wave development in conjunction of flow separation makes unstable wavy surface partially covering transom surface, i.e., the so-called 'wetted transom'. Transom wave formation is usually affecting the resistance characteristics of a ship, since the pressure contribution on transom surface as well as the wave-making resistance is changed. Flow modeling for 'wetted transom' is difficult, while the 'dry transom modeling' is often applied for the high-speed vessels. In the present study CFD results from the RANS equation solver using a finite volume method with level-set treatment are utilized to assess the topology of transom flow pattern for a destroyer model (DTMB5415) and a container ship (KCS). It is found that transom flow patterns are quite different for the two ships, in conformity to the shape of submerged transom. Furthermore, the existence of free surface seems to after the flow topology in case of KCS.

A study on the Propulsive Characteristics of Stern-End-Bulb (STERN-END-BULB의 추진특성 연구)

  • Kim, Eun-Chan;Gang, Guk-Jin
    • 한국기계연구소 소보
    • /
    • s.12
    • /
    • pp.63-71
    • /
    • 1984
  • A new kind of bulb called Stern-End-Bulb(SEB) for the improvement of the after part of fine hull forms was developed. The reduction of wave resistance and the improvement of the powering performance for the ship with SEB were shown by the ship model tests, At the same time, the characteristics of wave in the vicinity of the stern and the mechanism of the resistance reduction by SEB were investigated. By the systematical variation of the SEB size, the optimum size of SEB was obtained.

  • PDF

Reaction force of ship stern bearing in hull large deformation based on stochastic theory

  • Zhang, Sheng-dong;Long, Zhi-lin;Yang, Xiu-ying
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.723-732
    • /
    • 2020
  • A theoretical calculation model for ship stern bearings with large hull deformation is established and validated theoretically and experimentally. A hull simulation model is established to calculate hull deformations corresponding to the reaction force of stern bearings under multi-factor and multi-operating conditions. The results show that in the condition of wave load, hull deformation shows randomness; the aft stern tube bearing load obeys the Gaussian distribution and its value increases significantly compared with the load under static, and the probability of aft stern tube bearing load greater than 1 is 65.7%. The influence laws and levels between hull deformation and bearing reaction force are revealed, and suggestions for ship stern bearing specifications are proffered accordingly.

Effect of flap angle on transom stern flow of a High speed displacement Surface combatant

  • Hemanth Kumar, Y.;Vijayakumar, R.
    • Ocean Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-23
    • /
    • 2020
  • Hydrodynamic Drag of Surface combatants pose significant challenges with regard to fuel efficiency and exhaust emissions. Stern flaps have been used widely as an energy saving device, particularly by the US Navy (Hemanth et al. 2018a, Hemanth Kumar and Vijayakumar 2018b). In the present investigation the effect of flap turning angle on drag reduction is numerically and experimentally studied for a high-speed displacement surface combatant fitted with a stern flap in the Froude number range of 0.17-0.48. Parametric investigations are undertaken for constant chord length & span and varying turning angles of 5° 10° & 15°. Experimental resistance values in towing tank tests were validated with CFD. Investigations revealed that pressure increased as the flow velocity decreased with an increase in flap turning angle which was due to the centrifugal action of the flow caused by the induced concave curvature under the flap. There was no significant change in stern wave height but there was a gradual increase in the stern wave steepness with flap angle. Effective length of the vessel increased by lengthening of transom hollow. In low Froude number regime, flow was not influenced by flap curvature effects and pressure recovery was marginal. In the intermediate and high Froude number regimes pressure recovery increased with the flap turning angle and flow velocity.

Validation of time domain seakeeping codes for a destroyer hull form operating in steep stern-quartering seas

  • Van Walree, Frans;Carette, Nicolas F.A.J.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.9-19
    • /
    • 2011
  • The paper describes the validation of two time domain methods to simulate the behaviour of a destroyer operating in steep, stern-quartering seas. The significance of deck-edge immersion and water on deck on the capsize risk is shown as well as the necessity to account for the wave disturbances caused by the ship. A method is described to reconstruct experimental wave trains and finally two deterministic validation cases are shown.

Grid Generation and flow Analysis around a Twin-skeg Container Ship (Twin-skeg형 컨테이너선 주위의 격자계 생성과 유동 해석)

  • 박일룡;김우전;반석호
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.1
    • /
    • pp.15-22
    • /
    • 2004
  • Twin-skeg type stern shapes are recently adopted for very large commercial ships. However it is difficult to apply a CFD system to a hull form having twin-skeg, since grid topology around a twin-skeg type stern is more complicated than that of a conventional single-screw ship, or of an open-shaft type twin-screw ship with center-skeg. In the present study a surface mesh generator and a multi-block field grid generation program have been developed for twin-skeg type stern. Furthermore, multi-block flow solvers are utilized for potential and viscous flow analysis around a twin-skeg type stern The present computational system is applied to a 15,000TEU container ship with twin-skeg to prove the applicability. Wave profiles and wake distribution are calculated using the developed flow analysis tools and the results are compared with towing tank measurements.

A Model Test Study on the Effect of the Stern Interceptor for the Reduction of the Resistance and Trim Angle for Wave-piercing Hulls (파랑관통형 선형의 저항 및 트림각 감소를 위한 선미 인터셉터 부착효과에 관한 모형시험 연구)

  • Kim, Dae Hyuk;Seo, Inn-Duk;Rhee, Key-Pyo;Kim, Nakwan;Ahn, Jin-Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.485-493
    • /
    • 2015
  • Planing hull form is widely used as a high speed vessel hull. There is a problem of the planing hull not solved yet. The problem is that the planing hull has very large vertical acceleration and large heave and pitch motions. As one method for overcoming this problem, there is "wave-piercing hull". Before the motion in waves is investigated, the resistance and running attitude must be investigated. In this paper, the running attitude and resistance of two wave-piercing hulls are investigated by model tests. Model test results show that the wave-piercing hulls have large trim angle and sinkage at the high speed, so additional model tests are conducted by using the hull appended by stern interceptor that is very thin plate to increase the hydrodynamic pressure at the attached location. The results are compared with other planing hulls and the resistance components and the hydrodynamic force are discussed. From the model test results, it can be known that the stern interceptor is the effective appendage for the reduction of the resistance and trim angle of wave-piercing hull.

A Study on the Speed Effects of Afterbody Appendage for the Container Carrier (컨테이너 운반선의 선미부가물에 의한 속도성능 향상에 대한 연구)

  • Lim, Chae-Seong;Park, Dong-Woo
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.32-42
    • /
    • 2007
  • Container vessels are required to have a large KMT to load many containers which requires a wide transom stern form. The wide transom stern generates large stern waves particularly at the scantling draft. This means that reducing the stern wave leads to resistance reduction. Numerical analyses and Model tests for duck-tail of the stern part have been performed to reduce the resistance of the container vessel having the wide transom on the scantling draft and optimize the form of duck-tail with the change of the design parameter i.e. length and edge height. The optimized duck-tail increases the speed by 0.8 % at scantling draft.

  • PDF

Comparison of the Stern Forms and Resistance Characteristics for G/T 47,000 Class Mid-size Cruise Ships (47,000톤급 중형 크루즈선의 추진방식에 따른 선미부 형상과 저항특성 비교)

  • KIM DONG-JOON;PARK HYUN-SOO;HYUN BEOM-SOO;KIM MOO-LONG;CHOI KYUNG-SIK
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.57-63
    • /
    • 2004
  • Various propulsion systems, applicable for a G/T 47,000 class mid-size cruise ship, are discussed and a comparative study on stern forms and hull resistance characteristics is carried out, in relation to these propulsion systems. Based on shipyard production logs on similar cruise ships, a reference hull form of a single shaft propulsion system with center-skeg, is generated. Then two new stern hull forms are derived by using a hull transform technique: consisting of one stern form using a twin-skeg system and the other using the Azipod system. Using a CFD-based commercial flaw analysis program, WAVIS (WAve and VIScous flaw analysis system for hull form development), various hydrodynamic characteristics, including wave profiles and ship hull resistance, are compared for three hull forms.