• Title/Summary/Keyword: Stereoscopic algorithm

Search Result 116, Processing Time 0.024 seconds

Disparity-based Error Concealment for Stereoscopic Images with Superpixel Segmentation

  • Zhang, Yizhang;Tang, Guijin;Liu, Xiaohua;Sun, Changming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4375-4388
    • /
    • 2018
  • To solve the problem of transmission errors in stereoscopic images, this paper proposes a novel error concealment (EC) method using superpixel segmentation and adaptive disparity selection (SSADS). Our algorithm consists of two steps. The first step is disparity estimation for each pixel in a reference image. In this step, the numbers of superpixel segmentation labels of stereoscopic images are used as a new constraint for disparity matching to reduce the effect of mismatching. The second step is disparity selection for a lost block. In this step, a strategy based on boundary smoothness is proposed to adaptively select the optimal disparity which is used for error concealment. Experimental results demonstrate that compared with other methods, the proposed method has significant advantages in both objective and subjective quality assessment.

Automatic Control of Horizontal-moving Stereoscopic Camera by Disparity Compensation (시차 보정에 의한 수평이동방식 입체카메라의 자동제어)

  • Kwon, Ki-Chul;Lee, Yong-Bum;Choi, Young-Soo;Huh, Kyung-Moo;Kim, Nam
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.5
    • /
    • pp.77-85
    • /
    • 2001
  • The purpose of this study is to suggest Vergence Information Extracting Algorithm(VIEA) which enables quick and accurate vergence information achievement for automation of vergence and focus control of horizontal moving stereoscopic camera. Firstly, for this purpose, the geometric structure of horizontal moving stereoscopic camera device was analyzed and linear relation between the vergence and the focus control. Then stereoscopic camera was designed and produced with the application of vergence and focus relation formula. Finally, VIEA that uses Cepstrum filter was employed to implement Automatic Vergence and Focus Controlling Stereoscopic Camera System(AVFCSCS). VIEA showed lower vergence achievement time and error ratio in comparison with existing algorithms. The suggested system in this study substantially reduced the controlling time and error-ratio as to make it possible to achieve natural and clear images. It also simplified the handling of stereoscopic camera for the convenience of end-users.

  • PDF

Research on Infrastructure technology of Stereoscopic Object Expression Utilizing the Grabcut algorithm (Grabcut 알고리즘을 활용한 Stereoscopic 객체표현 기반 기술 연구)

  • Lee, Min ho;Choi, Jin yeong;Lee, Jong hyeok;Cha, Jae sang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.151-159
    • /
    • 2018
  • Recently, stereoscopic technology has become a potential for blue ocean as a new growth power industry, and interest in it has been steadily increasing with the development of virtual and augmented reality technologies. Various methods such as binocular parallax and polarized glasses have been developed and used for stereoscopic image expression, but they have limitations such as eye damage, headache, crosstalk and resolution degradation. In this paper, we present a new method of stereoscopic image representation that can overcome the limitations and verify its applicability through basic experiments for object extraction and real - time image representation.

Improved Disparity Map Computation on Stereoscopic Streaming Video with Multi-core Parallel Implementation

  • Kim, Cheong Ghil;Choi, Yong Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.728-741
    • /
    • 2015
  • Stereo vision has become an important technical issue in the field of 3D imaging, machine vision, robotics, image analysis, and so on. The depth map extraction from stereo video is a key technology of stereoscopic 3D video requiring stereo correspondence algorithms. This is the matching process of the similarity measure for each disparity value, followed by an aggregation and optimization step. Since it requires a lot of computational power, there are significant speed-performance advantages when exploiting parallel processing available on processors. In this situation, multi-core CPU may allow many parallel programming technologies to be realized in users computing devices. This paper proposes parallel implementations for calculating disparity map using a shared memory programming and exploiting the streaming SIMD extension technology. By doing so, we can take advantage both of the hardware and software features of multi-core processor. For the performance evaluation, we implemented a parallel SAD algorithm with OpenMP and SSE2. Their processing speeds are compared with non parallel version on stereoscopic streaming video. The experimental results show that both technologies have a significant effect on the performance and achieve great improvements on processing speed.

3-D information of Object by Modified Goldstein Algorithm at Digital holography

  • Yoon, Seon-Kyu;Kim, Sung-Kyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1486-1489
    • /
    • 2007
  • Generally many kind of phase unwrapping method are used to obtain three-dimensional feature in digital holography. Goldstein algorithm is representative method. But Goldstein algorithm has some problems. We developed a modified Goldstein algorithm that could solve the problem of Goldstein algorithm using the boundary information. Obtained three-dimensional information can be applied to 3-D contents of stereoscopic, multi-view, SMV, or holographic display.

  • PDF

A Study on the Stereo Infrared Image Enhancement (스테레오 적외선영상의 이미지 향상에 관한 연구)

  • 류재훈;김윤호;류광렬
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.171-174
    • /
    • 2003
  • This paper is a study on the 3D infrared image enhancement with Stereoscopic algorithm on still infrared image. The adapted stereo method is that the depth is extracted by comparison with right-left image, and the enhanced 3D infrared image by matching based on feature is realized. As the result of experiment this method forced the more smooth edge lines of 3D infrared images.

  • PDF

Effective Reconstruction of Stereoscopic Image Pair by using Regularized Adaptive Window Matching Algorithm

  • Ko, Jung-Hwan;Lee, Sang-Tae;Kim, Eun-Soo
    • Journal of Information Display
    • /
    • v.5 no.4
    • /
    • pp.31-37
    • /
    • 2004
  • In this paper, an effective method for reconstruction of stereoscopic image pair through the regularized adaptive disparity estimation is proposed. Although the conventional adaptive disparity window matching can sharply improve the PSNR of a reconstructed stereo image, but there still exist some problems of overlapping between the matching windows and disallocation of the matching windows, because the size of the matching window tend to changes adaptively in accordance with the magnitude of the feature values. In the proposed method, the problems relating to the conventional adaptive disparity estimation scheme can be solved and the predicted stereo image can be more effectively reconstructed by regularizing the extimated disparity vector with the neighboring disparity vectors. From the experimental results, it is found that the proposed algorithm show improvements the PSNR of the reconstructed right image by about 2.36${\sim}$2.76 dB, on average, compared with that of conventional algorithms.

3D Conversion of 2D Video Encoded by H.264

  • Hong, Ho-Ki;Ko, Min-Soo;Seo, Young-Ho;Kim, Dong-Wook;Yoo, Ji-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.990-1000
    • /
    • 2012
  • In this paper, we propose an algorithm that creates three-dimensional (3D) stereoscopic video from two-dimensional (2D) video encoded by H.264 instead of using two cameras conventionally. Very accurate motion vectors are available in H.264 bit streams because of the availability of a variety of block sizes. 2D/3D conversion algorithm proposed in this paper can create left and right images by using extracted motion information. Image type of a given image is first determined from the extracted motion information and each image type gives a different conversion algorithm. The cut detection has also been performed in order to prevent overlapping of two totally different scenes for left and right images. We show an improved performance of the proposed algorithm through experimental results.

Implementation of Multiview Stereoscopic 3D Display System using Volume Holographic Lenticular Sheet (VHLS 광학판 기반의 다시점 스테레오스코픽 3D 디스플레이 시스템의 구현)

  • 이상우;이맹호;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.716-725
    • /
    • 2004
  • In this paper, a new multiview stereoscopic 3D display system using a VHLS(volume holographic lenticular sheet) is suggested. The VHLS, which acts just like an optical direction modulator, can be implemented by recording the diffraction gratings corresponding each directional vector of the multiview stereoscopic images in the holographic recording material by using the angularly multiplexed recording property of the conventional volume hologram. Then, this fabricated VHLS is attached to the panel of a LCD spatial light modulator and used to diffract each of the multiview image loaded in a SLM to the corresponding spatial direction for making a 3D stereo view-zone. Accordingly, in this paper, the operational principle and characteristics of the VHLS are analyzed and an optimized 4-view VHLS is fabricated by using a commercial photopolymer. Then, a new VHLS-based 4-view stereoscopic 3D display system is implemented. Through some experimental results using a 4-view image synthesized with adaptive disparity estimation algorithm, it is suggested that implementation of a new VHLS-based multiview stereoscopic 3D display system can be possible.