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Abstract 
 

To solve the problem of transmission errors in stereoscopic images, this paper proposes a 
novel error concealment (EC) method using superpixel segmentation and adaptive disparity 
selection (SSADS). Our algorithm consists of two steps. The first step is disparity estimation 
for each pixel in a reference image. In this step, the numbers of superpixel segmentation labels 
of stereoscopic images are used as a new constraint for disparity matching to reduce the effect 
of mismatching. The second step is disparity selection for a lost block. In this step, a strategy 
based on boundary smoothness is proposed to adaptively select the optimal disparity which is 
used for error concealment. Experimental results demonstrate that compared with other 
methods, the proposed method has significant advantages in both objective and subjective 
quality assessment. 
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1. Introduction 

Due to the wide application prospect in areas of interactive multimedia such as free 
viewpoint TV and video conference, stereoscopic video technology has attracted increasing 
attention. However, the compressed bit stream of stereoscopic video is prone to transmission 
errors [1]. In order to improve the quality of reconstruction image, the error concealment 
technique, which is only implemented in a decoder and does not need the encoder to provide 
any additional support or to increase channel cost, has been applied to 3D video transmission. 

A few methods have been proposed in the literature. A temporal error concealment 
algorithm based on moment invariants is presented in [2]. It uses different block sizes which is 
proportional to the area of each candidate macro-block (MB) for a better feature extraction. 
Moreover, it utilizes a novel error function based on moment invariants to select the best 
candidate motion vector. An efficient and highly scalable concealment algorithm for textured 
color images is introduced in [3]. A lost area is restored by texture extrapolation from the 
surrounding regions logically associated on the superpixel level. Song et al. [4] developed 
three concealment modes for the error concealment of multi-view video sequences: temporal 
bilateral error concealment (TBEC), inter-view bilateral error concealment (IBEC), and 
multi-hypothesis error concealment (MHEC), and gave a mode selection scheme. An 
auto-regressive (AR) model based error concealment scheme is proposed for stereoscopic 
video coding in [5]. The error concealment scheme includes a temporal AR model for 
independent view, and a temporal-interview AR model for inter-view predicted view. Shadan 
et al. [6] proposed a new consistency model for error concealment of multi-view plus depth 
(MVD) video that allows the model to maintain a high level of consistency between frames of 
the same view (temporal consistency) and those of neighboring views (inter-view consistency). 
Then they used their model to implement concealment in a consistent manner. A 
content-adaptive spatial error concealment algorithm is presented in [7]. By using edge 
information extracted from the surrounding blocks, the error block which has been classified 
into one of three categories with different contents is reconstructed by appropriate methods to 
the category it belongs to. A spatial error concealment algorithm for video and images based 
on convex optimization is proposed in [8]. Missing macroblocks are sequentially 
reconstructed by filling them with a weighted set of templates extracted from the available 
neighborhood. A fast-efficient error concealment method for recovering information related to 
shape is presented in [9]. The proposed technique comprises block classification, edge 
direction interpolation, and filtering interpolation. A novel spatial error concealment 
algorithm with an adaptive linear predictor is proposed in [10]. Under the sequential recovery 
framework, pixels in missing blocks are successively reconstructed based on adaptive linear 
predictor. Fan et al. [11] proposed an error concealment algorithm based on canonical 
correlation analysis (CCA). They used CCA to estimate a correlation projection matrix which 
utilizes the loss of spatial information of macro block adjacent, and then the projection matrix 
and the adjacent region is used to estimate missing pixel areas. Yang et al. [12] proposed a 
hybrid error concealment method for slice losses in intra frames of view plus depth 
stereoscopic video. For lost regions near the edges in the frame, the multi-view (MV) is 
recovered from the corresponding depth frame. For other regions, the MV is recovered from 
co-located MB and its neighboring MBs in previous frame. Hu Yang et al.[13] proposed an 
error concealment scheme, in which the concealment problem is formulated as minimizing, in 
a weighted manner, the difference between the gradient of the reconstructed data and a 
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prescribed vector field under given boundary condition. Instead of using the motion 
compensated block as the final recovered pixel values, they use the gradient of the motion 
compensated block together with the surrounding correctly decoded pixels of the damaged 
block to reconstruct the lost data. A concept of motion map that can be easily generated in the 
decoder side is introduced in [14] and it is combined with the exemplar-based inpainting 
technique. The proposed method introduces an adaptive search window size that trades-off the 
quality and complexity. Moreover, an optional blending technique is proposed to limit the 
spatio-temporal artifacts. The research work in [15] included the spatio-temporal error 
detection which is combined with different error concealment methods such as copy paste, 
Block Matching Algorithm and Boundary Matching Algorithm (BMA). The paper presents 
the comparison of different existing error concealment methods which is combined with spatio 
temporal error detection. Koloda et al. [16][17] proposed a scalable spatial EC algorithm. The 
proposed technique exploits the excellent reconstructing abilities of the kernel-based 
minimum mean square error (K-MMSE) estimator. Error concealment for video coding based 
on a 3-D discrete wavelet transform (DWT) is considered in [18]. They assumed that the video 
sequence has a sparse representation in a known basis different from the DWT. Then they 
formulate the concealment problem as l1–norm minimization and solve it utilizing an iterative 
thresholding algorithm. The Comparison of different thresholding operators show that Video 
Block-Matching and 3D filtering provides the best reconstruction by utilizing spatial 
similarity within a frame and temporal similarity between neighbor frames. 

This paper aims to improve the effect of error concealment for stereoscopic images. The 
contributions of this paper are as follows: 

(1) Proposing a disparity estimation strategy using superpixel segmentation to improve 
the disparity accuracy. Compared with other methods, the proposed strategy can 
efficiently mitigate the mismatch problem. 

(2) Proposing an adaptive disparity selection strategy to select the optimal disparity for a 
lost block. The proposed adaptive strategy is more flexible and more accurate than 
traditional disparity selection strategy such as winner-take-all (WTA). 

2. Proposed Error Concealment Method 
Assume that the left-view image is a damaged image and the right-view image is a correctly 
decoded image. Fig. 1 shows the framework of our method. The proposed method is roughly 
divided into two parts: disparity estimation and disparity selection. Firstly, we segment both 
left-view image and right-view image of stereoscopic images by a superpixel segmentation 
method. Then, we estimate disparities by adaptive support-weight matching which uses the 
superpixel segmentation labels. After that, we utilize the proposed adaptive strategy to select 
the optimal disparity from the dense disparities. Finally, we use the optimal disparity to extract 
the data in the right-view image to conceal the damaged block in the left-view image. 

Input 
Image

EC

Superpixel Segmentation Reliability  Estimation

Optimal Disparity SelectionAdaptive Support-Weight 
Matching

Disparity Estimation Disparity Selection

Dense 
Disparity

 
Fig. 1. The framework of the proposed method 
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2.1 Disparity Estimation with Superpixel Segmentation 
According to the different camera positions, three-dimensional imaging system can be divided 
into parallel structure and rendezvous structure. Stereoscopic images which are acquired by a 
parallel structure only have horizontal disparities. There are vertical and horizontal disparities 
in stereoscopic images acquired by a rendezvous structure. However, vertical disparities can 
be eliminated by stereo image rectification. Therefore, this paper focuses on the stereoscopic 
images which only have horizontal disparities. 

We adopt the block matching method to obtain disparities, which divides an image into 
macro blocks, then searches their corresponding macro blocks in the reference image for every 
macro blocks with the assumption of constant disparity inside the macro blocks. The principle 
of disparity continuity constraint means that the variation of the disparity vector is continuous 
and smooth except near edge and occlusion areas of an image. According to the above 
principle, it can be inferred that the disparity of a lost block is the same as the disparities of its 
adjacent pixels. Therefore, this paper selects the nearest boundary pixels around a lost block as 
reference pixels to predict the disparity of the lost block. 

In order to obtain the dense disparities of above-mentioned pixels, we adopt the 
window-based matching algorithm. However, if the window whose geometric center is a 
reference pixel is constructed, it will contain lost pixels. Therefore, for each reference pixel, 
we design a different base-point-biased window according to its position relative to a lost 
block, as shown in Fig. 2. For more details, we refer the reader to our previous work [19]. 
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Fig. 2. Reference pixel biased windows 

 
During the search process, the disparity accuracy is undoubtedly the most critical issue. 

Traditional disparity matching methods only consider the matching cost and ignore the 
position correlation between pixels. Therefore, they are more likely to result in mismatches. 

In order to mitigate the above problem, a disparity estimation with superpixel segmentation 
in this paper is presented. It uses superpixel segmentation labels as a new constraint for 
disparity search. Here the Simple Linear Iterative Clustering (SLIC) [20] algorithm is adopted 
to obtain superpixels. 

SLIC algorithm converts the input images from the RGB color space to the CIELAB color 
space. A pixel's color in the CIELAB color space and its pixel position together compose a 
five-dimensional data vector used for K-means clustering, i.e.,  
 
 𝑝𝑖 = [𝑙𝑖 ,𝑎𝑖 ,𝑏𝑖 ,𝑢𝑖 , 𝑣𝑖]𝑇, 𝑖 = 1, … ,𝑀 (1) 
 
where li, ai and bi are the luminance component and two color components in the CIELAB 
color space. ui and vi are the positions in the horizontal and vertical directions. Then the SLIC 
method is implemented using the following measure to obtain the distance between two data 
vectors. 
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where 𝜂 is designed to control the balance between the color similarity and spatial proximity. 
When the distances are smaller than a predefined threshold, the corresponding pixels are 
regarded as belonging to the same class which is defined as a superpixel. 

After superpixel segmentation, the number of superpixel label, which is covered by a 
matching window, is measured. Assume that the numbers of superpixel labels, which are 
covered by matching windows in the left-view and the right-view images are NL and NR 
respectively. If NL=NR, we calculate the matching cost of the current matching. If NL≠NR, we 
conduct the next matching without calculating the matching cost, as shown in Fig. 3. 
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cost 

Searching 
next area
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NL=NR
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Comparing the 
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Fig. 3. Search constraint with superpixel segmentation labels 

 
This paper adopts the adaptive support-weight (ASW) disparity matching method [21] to 

deal with the issue of matching cost calculation. The weight w represents color similarity and 
geometric position proximity between two pixels 
 
 𝑤(𝑝, 𝑞) = 𝑓(∆𝑐𝑝𝑞 ,∆𝑔𝑝𝑞) (3) 
 
where ∆𝑐𝑝𝑞 and ∆𝑔𝑝𝑞  denote the color difference and space distance respectively between 
pixels p and q.  ∆𝑐𝑝𝑞 and ∆𝑔𝑝𝑞  can be regarded as independent events [21], so 𝑓�∆𝑐𝑝𝑞 ,∆𝑔𝑝𝑞� 
is given by 
 

  𝑓�∆𝑐𝑝𝑞 ,∆𝑔𝑝𝑞� = 𝑓𝑠(∆𝑐𝑝𝑞) × 𝑓𝑝(∆𝑔𝑝𝑞) (4) 
 

And 𝑓𝑠�∆𝑐𝑝𝑞� and𝑓𝑝�∆𝑔𝑝𝑞� and are defined respectively by 
 𝑓𝑠�∆𝑐𝑝𝑞� =  𝑒𝑥𝑝 (−∆𝑐𝑝𝑞

𝛾𝑐
) (5) 

 
 𝑓𝑝�∆𝑔𝑝𝑞� = 𝑒𝑥𝑝 (−∆𝑔𝑝𝑞

𝛾𝑝
) (6) 
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After w is obtained, the matching cost between p and �̅�𝑑 is defined by 
 

 𝐸(𝑝, �̅�𝑑) =
∑ 𝑤(𝑝,𝑞)𝑤(�̅�𝑑,𝑞�𝑑)𝑒(𝑞,𝑞�𝑑)𝑞∈𝑁𝑝,𝑞�𝑑∈𝑁𝑝�𝑑

∑ 𝑤(𝑝,𝑞)𝑤(�̅�𝑑,𝑞�𝑑)𝑞∈𝑁𝑝,𝑞�𝑑∈𝑁𝑝�𝑑

 (7) 

 
where p and q denote two pixels of the reference image, �̅�𝑑 and 𝑞�𝑑 are the corresponding 
pixels of the target image and d is the disparity between p and�̅�𝑑. Np and 𝑁�̅�𝑑 denote the 
window whose biased reference pixels are p and�̅�𝑑. e (q,𝑞�𝑑) is the matching cost between q 
and𝑞�𝑑. For each target pixel, we choose the disparity which can satisfy the minimum 𝐸(𝑝, �̅�𝑑) 
as its optimal disparity, namely 
 

 𝑑𝑝 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑑∈𝑆𝑑 𝐸(𝑝, �̅�𝑑) (8) 
 

We perform this operation for all reference pixels around a lost block, and therefore obtain 
local dense disparities D= {𝑑𝑝} of the lost block. 

2.2 Adaptive Strategy for Optimal Disparity Selection 
After obtaining local dense disparities, a disparity should be selected for the lost block. Next 
the image data will be extracted from the reference image according to this disparity of the lost 
block to conceal the missing pixels. 

Because of occlusion, uniform and/or, repetitive regions, the estimated disparity may not be 
reliable. Therefore, local dense disparities are checked using the consistency constraint in our 
method, 
 

 𝑅′(𝑥,𝑦) = �1,  |𝑑𝐿𝑅(𝑥,𝑦) + 𝑑𝑅𝐿(𝑥′,𝑦)| ≤ 𝑇
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� (9) 

 
where 𝑑𝐿𝑅(𝑥,𝑦) and 𝑑𝑅𝐿(𝑥′,𝑦) denote the disparity of pixel (x, y) from the left-view image to 
the right-view image and the disparity of pixel (𝑥′, y) from the right-view image to the 
left-view image respectively, and T is a threshold. We conduct this operation on all local dense 
disparities, and obtain a reliable disparity set. 

Next we will select a disparity from the reliable disparity set as the disparity of a lost block. 
Because the disparities in the reliable disparity set varies, a common method for selection is 
WTA. However, WTA do not work well if the neighboring content of a lost block changes. In 
this paper, we propose an adaptive strategy to select the optimal disparity of a lost block. This 
strategy has higher accuracy than the traditional WTA strategy. 

Sorting the disparities D in descending order according to the frequency of all elements. We 
define that the disparity of the Ni pixels is DNi. Then we obtain the disparities set Dr= {DNi}, 
(i=1, 2, ···) from D. The disparity value of Dr is unique. N is the total number of pixels which 
have reliable disparities. We can define that the number Ni of pixels whose reliable disparity is 
DNi accounted for the proportion of N as 
 
  𝑅𝑖 = 𝑁𝑖 𝑁⁄  (10) 
 

We set a threshold PT and obtain Pj as follows (j=1, 2, ···) 
 
 𝑃𝑗 = ∑ 𝑅𝑖

𝑗
𝑖=1  (11) 
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We collect the disparities whose corresponding Rj or Ni satisfy the conditions Pj<PT and Ni ≠ 

1. These collected disparities DNi (i=1, 2, ···, j).become the candidates of the optimal disparity, 
namely Dcand. Then we use every element in Dcand to try to conceal the lost block, and calculate 
the smoothness of the boundary between the recovered result of the lost block and its 
surrounding pixels (as shown in Fig. 4). We use the sum of squared difference (SSD) as the 
evaluation metric to calculate the boundary smoothness, i.e. 
 
 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑆𝑆𝐷 = ∑ [𝑝(𝑥,𝑦1 − 1) − 𝑝(𝑥,𝑦1)]2𝑥1+𝑠−1

𝑥=𝑥1  
 

+∑ [𝑝(𝑥,𝑦1 + 𝑠 − 1) − 𝑝(𝑥,𝑦1 + 𝑠)]2𝑥1+𝑠−1
𝑥=𝑥1   

 
+∑ [𝑝(𝑥1 − 1,𝑦)− 𝑝(𝑥1,𝑦)]2𝑦1+𝑠−1

𝑦=𝑦1   
 

+∑ [𝑝(𝑥1 + 𝑠 − 1, 𝑦)− 𝑝(𝑥1 + 𝑠,𝑦)]2𝑦1+𝑠−1
𝑦=𝑦1  (12) 

 
where s is the size of a lost block.  

Finally, we select the disparity whose SSD is minimum as the optimal disparity Dopt, and 
then use Dopt to extract the data to conceal the lost block. 
 

Recovered MB

(x1,y1)

 
 

Fig. 4. Illustration of the external and internal boundary of a recovered MB 
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Fig. 5. The adaptive strategy for selecting the optimal disparity 

 
As an example, Fig. 5 shows the difference between our adaptive selection strategy and 

WTA. The steps for the optimal disparity selection are summarized in Algorithm1. 
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Algorithm 1 Selecting Optimal Disparity 

 Input: local dense disparity 
 Reliability detection: obtain reliable disparity set 
 Adaptive selection: 

• Reliable disparity ranking 
• for  i=1:reliable disparity number 

𝑅𝑖 = 𝑁𝑖 𝑁⁄ ;  𝑅 = 𝑅 + 𝑅𝑖; 
if  Pj>=PT or Ni =1  break;  end 

end 
• for  m=1:i 

Error concealment using the candidate disparity and selecting optimal disparity; 
end 

  Output：the optimal disparity 

3. Experimental Results 
In order to test the effect of the proposed method, we conduct a series of simulation 
experiments. Objective and subjective quality assessment is used as the indicator of the 
performance of our method. 

We use the peak signal to noise ratio (PSNR) and Structural similarity (SSIM) as the 
objective measure, and choose stereoscopic image Teddy, Tsukuba, Cones, Baby1, Baby3, 
Books, Dolls, Moebius, Monopoly, and Rocks1 [22]as the test images, as shown in Fig. 6. The 
number of superpixels is set to 3500 and the PT is set to 0.7 experimentally. The  block-loss 
ratio γ is set to 5%, 10%, and 15% in our experiments. We compare the performance of our 
method with zero vector method (ZV), Kernel-Based MMSE (KMMSE)[17], XFSE[23], 
weighted template matching (WTM) [8], and auto-regressive model based error concealment 
(AR) [5].  

In order to test the effectiveness of our proposed adaptive disparity selection strategy, we 
also carried out the following experiments. We combine our proposed disparity estimation 
strategy with the WTA strategy into a test error concealment method called SSADS-1. As 
shown in Table 1, the best result is highlighted in each cell. 

 

 

 
Fig. 6. Test images 

 
Table 1 and Table 2 have shown that compared with other methods, both the proposed 

disparity estimation method and the adaptive strategy for selecting optimal disparity has 
achieved noticeable improvements. The PSNR of our method is more than 1 dB higher than 
other methods for most test images. For the stereoscopic images of cloth1, our method even 
has the advantages of more than 3 dB in PSNR. Compared with other methods, the SSIM value 
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of our method also has advantage. 
We also calculate the average PSNR and SSIM of each EC method for all test images, as 

shown in the AVE column of Table 1 and Table 2. The average PSNR data are shown in Fig. 
7. It is clear that the performance of our proposed algorithm is much better than other error 
concealment algorithm in the cases of higher γ. 

For large size image processing, processing time is a very important index. Here we take 
image baby3 for example. We expand it to the size of 1920*1080 and measure the execution 
time when different algorithms conceal its losing blocks, as shown in Table 3. The block-loss 
ratio γ is set to 5%. In view of the PSNR and SSIM of our method, its execution time is 
acceptable. 

 
Table 1. Comparison of objective quality of error concealment methods in terms of PSNR (dB) 
 teddy tsukuba cones baby1 baby3 books dolls midd2 moebius rocks1 AVE 

 γ≈5% 
ZV 25.12 26.92 26.44 34.76 26.63 23.37 30.10 24.76 25.55 27.93 27.16 

KMMSE 34.09 34.30 33.62 41.49 36.14 34.93 34.56 42.69 37.50 35.80 36.51 
XFSE 34.95 33.59 33.33 41.22 35.71 35.94 34.74 38.24 37.71 35.39 36.08 
WTM 33.43 33.26 32.92 41.10 35.62 33.35 34.98 36.29 35.29 35.24 35.15 

AR 37.64 35.85 34.20 41.16 36.96 34.19 40.42 36.80 36.34 38.33 37.19 
SSADS-1 34.43 35.96 33.61 41.79 37.75 35.18 34.12 36.58 36.21 37.65 36.33 
SSADS 37.96 37.37 34.37 42.58 38.15 35.69 40.59 40.53 37.86 38.48 38.36 

 γ≈10% 
ZV 21.90 25.61 22.50 30.73 25.46 21.20 26.80 23.05 23.83 26.10 24.72 

KMMSE 33.49 30.74 30.68 37.95 36.50 32.18 29.79 34.34 34.49 33.75 33.39 
XFSE 33.71 31.37 30.46 38.09 35.57 33.35 30.33 33.63 33.81 33.11 33.34 
WTM 33.30 30.65 30.21 38.27 36.14 33.38 31.37 32.64 34.30 33.92 33.42 

AR 29.50 33.08 29.45 32.52 29.89 27.82 34.48 29.86 30.90 31.64 30.92 
SSADS-1 29.10 32.26 29.75 40.00 35.21 36.04 31.48 31.43 34.60 36.70 33.66 
SSADS 34.04 36.17 31.50 39.84 38.72 36.07 36.97 35.02 35.97 37.53 36.18 

 γ≈15% 
ZV 21.00 24.97 21.61 28.87 23.47 20.14 25.57 22.65 23.09 23.13 23.45 

KMMSE 30.38 29.81 29.46 34.68 33.85 29.91 28.31 32.78 33.52 31.72 31.44 
XFSE 30.49 30.28 29.26 34.90 33.07 30.90 28.65 31.71 32.73 31.11 31.31 
WTM 29.86 29.31 29.07 35.72 33.24 29.98 30.64 32.33 33.52 31.67 31.53 

AR 28.58 30.49 28.34 29.91 28.65 26.72 33.00 29.23 29.50 30.55 29.50 
SSADS-1 28.17 31.78 28.78 36.47 32.98 34.15 28.65 30.91 33.54 35.02 32.05 
SSADS 32.25 35.17 30.29 37.32 36.34 34.65 35.26 34.51 35.00 35.82 34.66 
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Fig. 7. Comparison of EC methods in average PSNR (dB) 

 
Table 2. Comparison of objective quality of error concealment methods in terms of SSIM (scaled by 

100) 
 teddy tsukuba cones baby1 baby3 books dolls midd2 moebius rocks1 AVE 

 γ≈5% 
ZV 92.70 94.70 91.66 96.07 93.03 92.28 91.77 94.90 91.78 93.94 93.28 

KMMSE 97.48 98.01 96.62 98.47 98.18 98.79 97.47 99.69 98.45 97.36 98.05 
XFSE 97.37 97.50 96.08 98.29 97.96 98.55 97.36 99.42 98.36 97.29 97.82 
WTM 97.36 97.86 96.49 98.40 98.12 98.62 97.36 99.61 98.30 97.33 97.95 

AR 98.79 98.59 97.91 98.74 98.56 98.56 97.92 99.28 98.03 98.71 98.51 
SSADS 98.63 98.73 97.63 98.93 98.52 98.83 97.96 99.45 98.28 98.45 98.54 

 γ≈10% 
ZV 87.50 91.72 85.66 92.22 88.73 87.97 87.23 92.82 86.74 89.03 88.96 

KMMSE 96.39 96.36 94.00 96.81 97.33 97.82 95.08 98.89 96.93 96.13 96.57 
XFSE 96.12 95.88 93.39 96.68 96.97 97.33 94.54 98.32 96.55 95.66 96.14 
WTM 96.29 95.98 93.89 96.89 97.14 94.97 94.97 98.67 96.85 96.17 96.18 

AR 95.33 97.12 94.78 94.97 94.38 94.23 95.11 95.78 95.85 95.98 95.35 
SSADS 97.59 98.14 95.94 98.15 97.93 98.36 96.92 98.94 97.87 98.11 97.80 

 γ≈15% 
ZV 82.08 89.19 78.97 86.69 81.75 81.95 77.89 89.22 80.91 81.70 83.04 

KMMSE 94.02 94.85 91.64 93.76 95.35 95.71 92.49 97.96 95.43 93.19 94.44 
XFSE 93.45 94.23 90.73 93.64 94.78 94.91 91.42 97.11 94.68 92.58 93.75 
WTM 93.81 94.47 91.51 93.85 95.04 95.24 92.29 97.72 95.18 93.19 94.23 

AR 93.40 96.40 91.92 92.52 92.56 92.23 92.89 93.67 93.32 94.18 93.31 
SSADS 96.28 97.83 94.01 97.10 97.03 97.61 95.24 98.57 96.97 96.91 96.76 

 
Table 3. Comparison of the processing time of error concealment methods for image baby3 (s) 

ZV KMMSE XFSE WTM AR SSADS 
8.2731 7727.9033 160.8160 1453.5562 11.7240 794.0262 

 
We then compare the subjective quality assessment of above methods. Here we take Midd2, 

Tsukuba, Teddy as examples as given in Figs. 8-10. It can be observed that our method has 
achieved excellent performance in many areas such as those marked by red rectangles. 
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 (a) Original image (b) Damaged image (c) ZV (d) KMMSE 

 
 (e)XFSE (f) WTM (g) AR (h) SSADS 

Fig. 8. Comparison of subjective quality on image Midd2 (γ≈5%) 
 

 
 (a) Original image (b) Damaged image (c) ZV (d) KMMSE 

 
 (e) XFSE (f) WTM (g) AR (h) SSADS 

Fig. 9. Comparison of subjective quality on image Tsukuba (γ≈10%) 
 

 
 (a) Original image (b) Damaged image (c) ZV (d) KMMSE 

 
 (e)XFSE (f) WTM (g) AR (h) SSADS 

Fig. 10. Comparison of subjective quality on image Teddy (γ≈15%) 
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4. Conclusions 
This paper proposes a novel error concealment method using superpixel segmentation and 
adaptive disparity selection. In the process of disparity estimation, we segment images using 
the superpixel segmentation method. Then we add a new constraint for disparity search using 
the superpixel segmentation labels. After obtaining the local dense disparities and handling 
them with reliability detection, we adopt our proposed adaptive strategy to select the optimal 
disparity which is used for accurate error concealment from reliable disparity set. 
Experimental results demonstrate that compared with other methods, the proposed method can 
achieve significant improvements on both quantitative measure and visual assessment. 
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