• Title/Summary/Keyword: Stereo cameras.

Search Result 208, Processing Time 0.033 seconds

Development of a Fruit Harvesting Robot(II) -Determination of Fruit Location by a Closed-Circuit TV Camera- (과실수확(果實收穫) 로봇에 관한 연구(硏究)(II) -폐쇄회로(閉鎖回路) TV 카메라에 의한 과실(果實)의 위치검출(位置檢出)-)

  • Ryu, K.H.;Noh, S.H.;Kim, Y.H.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.2
    • /
    • pp.104-114
    • /
    • 1989
  • The most important subject in developing agricultural robots for fruit harvesting is to detect accurately the location of a fruit about the given coordinate system. This study was carried out to develop an image processing algorithm which enables finding out the three dimensional locations of a fruit. The digital image processing device consisted of an optosensor (Closed-circuit TV camera), image processing interface board (Digitizer) and microcomputer (IBM PC/AT). A stereo-image processing method using the two cameras attached to the manipulator was evaluated through experiment with apples. The accuracy and quickness of detecting the location of apples by this method was not satisfactory. The maximum errors of the detected locations by the stereo-image processing method in x-, Y-, and z- directions were 3, 4 and 4 cm, respectively. The maximum time required to get the rectangular coordinate data of a fruit was about 2 minutes.

  • PDF

Luminance Change Independent 3D Snail Tracking

  • Dewi, Primastuti;Choi, Yoen-Seok;Chon, Tae-Soo;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.175-178
    • /
    • 2010
  • Slow movement of snail can be a benefit since it means less speed of tracking is required to get accurate movement track, but in the other side it is difficult to extract the object because the snail is almost as static as the background. In this paper, we present a technique to track the snail by using one of its common characteristic, dark color of its shell. The technique needs to be robust to illumination change since the experiment is usually to observe the movement of snail both at bright and dim condition. Snail position coordinate in 3D space is calculated using orthogonal stereo vision which combines the information from two images taken from cameras at the top and in front of the aquarium. Experimental results show this technique does not need prior background image extraction and robust to gradual or sudden illumination change.

  • PDF

MULTI-VIEW STEREO CAMERA CALIBRATION USING LASER TARGETS FOR MEASUREMENT OF LONG OBJECTS

  • Yoshimi, Takashi;Yoshimura, Takaharu;Takase, Ryuichi;Kawai, Yoshihiro;Tomita, Fumiaki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.566-571
    • /
    • 2009
  • A calibration method for multiple sets of stereo vision cameras is proposed. To measure the three-dimensional shape of a very long object, measuring the object at different viewpoints and registration of the data are necessary. In this study, two lasers beams generate two strings of calibration targets, which form straight lines in the world coordinate system. An evaluation function is defined to calculate the sum of the squares of the distances between each transformed target and the fitted line representing the laser beam to each target, and the distances between points appearing in the data sets of two adjacent viewpoints. The calculation process for the approximation method based on data linearity is presented. The experimental results show the effectiveness of the method.

  • PDF

2D Map generation Using Omnidirectional Image sensor and Stereo Vision for MobileRobot MAIRO (자율이동로봇MAIRO의 전방향 이미지센서와 스테레오 비전 시스템을 이용한 2차원 지도 생성)

  • Kim, Kyung-Ho;Lee, Hyung-Kyu;Son, Young-Jun;Song, Jae-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.495-500
    • /
    • 2002
  • Recently, a service robot industry outstands as an up and coming industry of the next generation. Specially, there are so many research in self-steering movement(SSM). In order to implement SSM, robot must effectively recognize all around, detect objects and make a surrounding map with sensors. So, many robots have a sonar and a infrared sensor, etc. But, in these sensors, We only know informations about between the robot and the object as well as resolution faculty is of inferior quality. In this paper, we will introduce new algorithm that recognizes objects around robot and makes a two dimension surrounding map with a omni-direction vision camera and two stereo vision cameras.

  • PDF

Target image detection and servo motor control for automatic surveillance tracking (자동 감시 추적을 위한 표적영상 검출 및 서보모터 제어)

  • Shin, Heung Yeoul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.2
    • /
    • pp.119-127
    • /
    • 2010
  • In this paper, we propose a new automatic surveillance tracking system that can extract the target from the complex background and foreground noises by using the image-based SAD algorithm and control the servo motor of cameras by using kanatani algorithm. From the experimental results the proposed stereo tracking system is found to track the target adaptively under the circumstance of complex and changing background noises and the possibility of real-time implementation of the proposed system by using the optical system is also suggested.

Distance Detection Using Wavelet in Stereo Images (스테레오 영상에서 웨이블릿을 이용한 거리정보 검출)

  • 양석주;백중환
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.77-80
    • /
    • 2000
  • In this paper, we propose a method of detecting the distance between two vehicles by computing the disparity of the close-rang vehicle stereo image using two digital cameras. The boundary(or edge) of the object considered the vehicle is obtained by using the modified wavelet transform which has multi-resolution characteristics. We analyze the histogram using the coarse-to-fine method considering a whole feature and increase the resolution to obtain the exact disparity. From the results, the distance of the close-range vehicle is detected effectively by using our proposed method.

  • PDF

A Study of Rectification of Stereo Images for Synthesis of Arbitrary View Images (임의 시점 영상 합성을 위한 스테레오 영상 보정 기법에 관한 연구)

  • Ahn, Jin-Ho;Jang, Heung-Yeop;Lee, Je-Ho;Kwon, Yong-Moo;Kim, Sang-Kuk;Park, Sang-Hui
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.442-444
    • /
    • 1996
  • This paper presents a new image rectification method using stereo image pairs to synthesize arbitrary viewing images. The image rectification is a preprocessing procedure that generates a vertically aligned images and makes epipolar lines collinear. The proposed rectification method has more robustness by considering the real situations such as the mismatch of pan angle, tilt angle and vertical shifting of cameras than previous method[5] which considers only pan angle. We evaluate the proposed method by comparison with previous method using synthesized images.

  • PDF

A Method for Surface Reconstruction and Synthesizing Intermediate Images for Multi-viewpoint 3-D Displays

  • Fujii, Mahito;Ito, Takayuki;Miyake, Sei
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06b
    • /
    • pp.35-40
    • /
    • 1996
  • In this paper, a method for 3-D surface reconstruction with two real cameras is presented. The method, which combines the extraction of binocular disparity and its interpolation can be applied to the synthesis of images from virtual viewpoints. The synthesized virtual images are as natural as the real images even when we observe the images as stereoscopic images. The method opens up many applications, such as synthesizing input images for multi-viewpoint 3-D displays, enhancing the depth impression in 2-D images and so on. We also have developed a video-rate stereo machine able to obtain binocular disparity in 1/30 sec with two cameras. We show the performance of the machine.

  • PDF

Vibration Measurement of a Structure Using Non-metric Cameras (비측정용 카메라를 이용한 구조물 진동 측정)

  • Rhee, Hui-Nam;Lee, Hyo-Seong;Lee, Sang-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.107-108
    • /
    • 2011
  • A methodology to measure 3-dimensional vibrational displacement of a structure by digital photogrammetry is proposed in this paper. Stereo digital images of a vibrating structure were obtained by two non-metric cameras. Then by applying the collinearity condition to the images, the 3-d displacement time history data of a point or many points can be calculated by the present methodology. Experimental work was performed to measure the displacement time history for a cantilever beam excited by a piezoelectric patch, in which the in-depth displacement data obtained by the proposed method well matched the laser sensor data.

  • PDF

Development of a Transplanting Robot System for Tissue Culture Pants (II) - Machine Vision System - (조직배양체 이식로봇 시스템의 개발 (II) - 기계시각 시스템 -)

  • Lee, H. D.;Kim, K. D.;Kim, C. S.;Kim, J. P.;Jung, H.
    • Journal of Biosystems Engineering
    • /
    • v.24 no.1
    • /
    • pp.41-50
    • /
    • 1999
  • This study aims at detecting the three dimensional gripping points for the transplanting robot system to grip in the process of developing transplanting robot system, which is one of the automation systems for transplanting tissue culture. The stereo vision system equipped with two cameras has been used to detect the gripping points of the plant stem. The method for matching the plants of the image information which came from two cameras was to measure the total numbers of pixels, leaves, and the heights of the plants. The gripping points were detected near the roots after extracting the stem parts by the standard deviation of the X axis according to the Y axis. The performance test of the developed program showed that the detecting errors of the gripping points were 0∼1mm for X axis and 1∼2mm for Y & Z axis. The mean running time of the program was about 3 seconds.

  • PDF