• Title/Summary/Keyword: Stepped beam

Search Result 66, Processing Time 0.031 seconds

Optical Fiber Daylighting System Combined with LED Lighting and CPV based on Stepped Thickness Waveguide for Indoor Lighting

  • Vu, Ngoc Hai;Shin, Seoyong
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.488-499
    • /
    • 2016
  • We present a design and optical simulation of a cost-effective hybrid daylighting/LED system composed of mixing sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting. In this approach, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The proposed sunlight collector consists of a Fresnel lens array. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. The visible rays passing through the beam splitters are coupled to a stepped thickness waveguide (STW) by tilted mirrors and confined by total internal reflection (TIR). LEDs are integrated at the end of the STW to improve the lighting quality. LEDs’ light and sunlight are mixed in the waveguide and they are coupled into an optical fiber bundle for indoor illumination. An optical sensor and lighting control system are used to control the LED light flow to ensure that the total output flux for indoor lighting is a fixed value when the sunlight is inadequate. The daylighting capacity was modeled and simulated with a commercial ray tracing software (LighttoolsTM). Results show that the system can achieve 63.8% optical efficiency at geometrical concentration ratio of 630. A required accuracy of sun tracking system achieved more than ±0.5o . Therefore, our results provide an important breakthrough for the commercialization of large scale optical fiber daylighting systems that are faced with challenges related to high costs.

Stiffness matrices for linearly tapered beam elements (선형 변단면 보요소의 강도행렬)

  • 최외호;민경주;이승우
    • Computational Structural Engineering
    • /
    • v.8 no.1
    • /
    • pp.115-122
    • /
    • 1995
  • For the three dimensional analysis of linearly tapered members, the stiffness matrices are derived. Significant improvements of accuracy and efficiency of the analysis are achieved by using the stiffness matrices developed in this study. Results of these analysis are compared with those based upon stepped representation of beam elements in the ANSYS. The stiffness matrices presented in this study can be used for the analysis of tapered and prismatic members.

  • PDF

Prediction of Dynamic Characteristics of Continuous Systems Due to the Mass Modification (질량변경에 따른 연속계의 동특성변화 예측)

  • 이정윤;최상렬;박천권;오재응;정석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.248-256
    • /
    • 1993
  • This paper deriver the generalized mass to find dynamic characteristics and its derivatives of a continous system. And a new sensitivity analysis method is presented by using the amount of change of generalized mass and vibrational mode caused by the variation of lumped and distributed mass. In this paper, to get or detect appropriate results, cantilever beam and stepped beam are used. Deviations of sensitivity coefficient, natual frequency, vibrational mode and transfer function are calculated as result, and compared with the theoretical exact values.

Complex Conjugate Resolved Retinal Imaging by One-micrometer Spectral Domain Optical Coherence Tomography Using an Electro-optical Phase Modulator

  • Fabritius, Tapio E.J.;Makita, Shuichi;Yamanari, Masahiro;Myllyla, Risto A.;Yasuno, Yoshiaki
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.111-117
    • /
    • 2011
  • Full-range spectral domain optical coherence tomography (SD-OCT) with a 1-${\mu}m$ band light source is shown here. The phase of the reference beam is continuously stepped while the probing beam scans the sample laterally (B-scan). The two dimensional spectral interferogram obtained is processed by a Fourier transform method to obtain a complex spectrum leading to a full-range OCT image. A detailed mathematical explanation of the complex conjugate resolving method utilized is provided. The system's measurement speed was 7.96 kHz, the measured axial resolution was $9.6{\mu}m$ in air and the maximum sensitivity 99.4 dB. To demonstrate the effect of mirror image elimination, In vivo human eye pathology was measured.

Crack Growth and Debonding Behaviors of the Pre-cracked RC Beams Repaired with Carbon Fiber Sheets (사전균열로 손상된 RC 보의 탄소섬유시트 보수 후의 균열성장 및 박락거동)

  • Kim, Chung Ho;Ko, Sin Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.121-129
    • /
    • 2006
  • This study look into the mechanisms of growth and magnification of the cracks and delamination in the pre-cracked RC beams repaired with carbon fiber sheets. The experimental parameters were loading type, loading speed and crack. In the experiments, it was confirmed that a failure of beams began with development and propagation of the stepped delamination in the below the loading point due to the rapid change of shear force, but mechanisms of the failure were not influenced with loading type, loading speed and pre-cracks. Particularly, in the case of beams having the pre-cracks, growth of crack concentrated at the special crack below the loading point and led to failure of the beam by delamination due to magnification of crack.

Stress Analysis of a Curved Beam Plate by using Photoelastic Fringe Phase Shifing Technique (광탄성 프린지 위상 이동법을 이용한 곡선보평판의 응력 해석)

  • Baek, Tae-Hyeon;Kim, Myeong-Su;Kim, Su-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2313-2318
    • /
    • 2000
  • The method of photoelasticity allows one to obtain principal stress differences and principal stress directions in a photoelastic model. In the classical approach, the photoelastic parameters are measured manually point by point. This is time consuming and requires skill in the identification and measurement of photoelastic data. Fringe phase shifting method has been recently developed and widely used to measure and analyze fringe data in photo-mechanics. This paper presents the test results of photoelastic fringe phase shifting method for the stress analysis of a curved beam plate. The technique used here requires four phase stepped photoelastic images obtained from a circular polariscope by rotating the analyzer at 0˚, 45˚, 90˚ and 135˚. Experimental results are compared with those of ANSYS and calculated by the simple beam theory. Good agreement among the results can be observed.

Study on terahertz (THz) photoconversion technology based on hyperfine energy-level splitting of Positronium (Ps) generated from relativistic electron beams

  • Sun-Hong Min;Chawon Park;Ilsung Cho;Minho Kim;Sukhwal Ma;Won Taek Hwang;Kyeong Min Kim;Seungwoo Park;Min Young Lee;Eun Ju Kim;Kyo Chul Lee;Yong Jin Lee;Bong Hwan Hong
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.102-115
    • /
    • 2020
  • In the state of Positronium (Ps), which is an unstable material created by the temporary combination of electrons and positrons, the imaging technology through photo-conversion methodology is emerging as a new research theme under resonance conditions through terahertz electromagnetic waves. Normally, Positronium can be observed in the positron emission computed tomography (PET) process when an unstable, separate state that remains after the pair annihilation of an electron and a positron remains. In this study, terahertz (THz) waves and Cherenkov radiation (CR) are generated using the principle of ponderomotive force in the plasma wake-field acceleration, and electrons and positrons are simultaneously generated by using a relativistic electron beam without using a PET device. We confirm the possibility of Positronium photoconversion technology in terahertz electromagnetic resonance conditions through experimental studies that generate an unstable state. Here, a relativistic electron beam (REB) energy of 0.5 MeV (γ=2) was used, and the terahertz wave frequencies is G-band. Meanwhile, a THz wave mode converting three-stepped axicon lens was used to apply the photoconversion technology. Through this, light emission in the form of a luminescence-converted Bessel beam can be verified. In the future, it can be used complementarily with PET in nuclear medicine in the field of medical imaging.

An Amplitude Comparison Direction-Finding Antenna Assembly for Mounting on a Small Flight Vehicle (소형 비행체 탑재를 위한 크기 비교용 방향 탐지 안테나 조립체)

  • Kim, Jaesik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.459-465
    • /
    • 2020
  • In this paper, a compact antenna assembly for an amplitude comparison direction-finding(DF) method for a small flight vehicle is presented. Designed antenna assembly consists of four antennas and it is mounted on a radius of 1.45 λc where λc corresponds to the wavelength of the center frequency. To achieve compactness and robustness of the assembly, the elements are fed by end-launch feeding method and have modified aperture shapes of E- or H-sectoral horns. The feeding part consists of SMA connector, stepped impedance matching structure, and square waveguide of 0.6 λc × 0.6 λc. To achieve different main beam directions for every antenna which is required condition for amplitude comparison DF method, all apertures of the antennas are inclined and it makes the main beam direction of each antenna to top, bottom, left, and right with respect to the axis of the platform. To verify the validation of DF performance of the presented antenna assembly, amplitude comparison curves using measurement results are presented. The bandwidth of the antennas are above 3.2 % in Ku-band(VSWR ≤ 2:1).

A developed design optimization model for semi-rigid steel frames using teaching-learning-based optimization and genetic algorithms

  • Shallan, Osman;Maaly, Hassan M.;Hamdy, Osman
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.173-183
    • /
    • 2018
  • This paper proposes a developed optimization model for steel frames with semi-rigid beam-to-column connections and fixed bases using teaching-learning-based optimization (TLBO) and genetic algorithm (GA) techniques. This method uses rotational deformations of frame members ends as an optimization variable to simultaneously obtain the optimum cross-sections and the most suitable beam-to-column connection type. The total cost of members plus connections cost of the frame are minimized. Frye and Morris (1975) polynomial model is used for modeling nonlinearity of semi-rigid connections, and the $P-{\Delta}$ effect and geometric nonlinearity are considered through a stepped analysis process. The stress and displacement constraints of AISC-LRFD (2016) specifications, along with size fitting constraints, are considered in the design procedure. The developed model is applied to three benchmark steel frames, and the results are compared with previous literature results. The comparisons show that developed model using both LTBO and GA achieves better results than previous approaches in the literature.

A Study on Inelastic Behavior of Monosymmetric Singly Stepped Beam Subjected to Uniform Load (등분포 하중을 받는 일축대칭 일단 스텝보의 비탄성 거동 특성 고찰)

  • Park, Yi-Seul;Park, Jong-Sub
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.738-740
    • /
    • 2012
  • 최근 변단면 거더의 경제성을 고려하여 장경간 거더 교량과 강골조 구조물에 변단면보의 사용이 증가하고 있으며, 고강도 강의 등장으로 인해 변단면보의 정확한 좌굴 강도의 평가가 매우 중요시 되고 있다. 본 논문에서는 기존에 연구된 탄성 횡-비틀림 좌굴 강도에 관한 연구를 바탕으로하여 별로 비탄성 구간에 비지지 길이가 존재하는 일축대칭 I형 변단면보의 횡-비틀림 좌굴 강도 해석을 실시하였다. 해석에는 유한요소해석프로그램인 ABAQUS(2007)가 사용되었으며, MINITAB(2006)을 이용하여 간편한 설계식을 제안하고 있다. 일단 계단식 단면을 가지는 보에 대하여 고려하였으며, 플랜지 길이 방향 비, 너비방향 비, 두께의 비로 계단식 I형 보를 나타내었다. 집중 하중을 적용시켰으며 비선형 해석을 위해 잔류응력 및 초기변형과 재료비선형을 고려하였다. 본 연구 결과에서 제안된 식은 향후 다양한 하중이 작용하는 비탄성 횡-비틀림 좌굴 강도에 대한 연구에 많은 도움이 될 것이다.

  • PDF