• 제목/요약/키워드: Stepped Method

검색결과 219건 처리시간 0.023초

계단형상에 의한 스풀밸브의 유동력 보상 (Flow Force Compensation by Stepped Spool Valve)

  • 신원규;최현영;신효필;문의준
    • 한국정밀공학회지
    • /
    • 제20권6호
    • /
    • pp.145-150
    • /
    • 2003
  • This paper is on the study of flow force compensation for spool type valves. A simple method for flow force compensation using a stepped spool is presented in this paper. It is easy to manufacture the stepped spool of the presented method because the shape of it is simple. The method has another merit that the size of valve need not be increased. Actuating force required for driving the spool can be decreased through the compensation of flow force. The effect of presented method is predicted through CFD analysis. The results of the CFD analysis are also utilized for the optimization of step shape. The prototypes of flow force compensated Direct Drive Servo-Valve are manufactured, and the measurements of flow force are carried out. The measured effect of flow force compensation is very similar to that from the CFD analysis.

Free vibration analysis of uniform and stepped functionally graded circular cylindrical shells

  • Li, Haichao;Pang, Fuzhen;Du, Yuan;Gao, Cong
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.163-180
    • /
    • 2019
  • A semi analytical method is employed to analyze free vibration characteristics of uniform and stepped functionally graded circular cylindrical shells under complex boundary conditions. The analytical model is established based on multi-segment partitioning strategy and first-order shear deformation theory. The displacement functions are handled by unified Jacobi polynomials and Fourier series. In order to obtain continuous conditions and satisfy complex boundary conditions, the penalty method about spring technique is adopted. The solutions about free vibration behavior of functionally graded circular cylindrical shells were obtained by approach of Rayleigh-Ritz. To confirm the dependability and validity of present approach, numerical verifications and convergence studies are conducted on functionally graded cylindrical shells under various influencing factors such as boundaries, spring parameters et al. The present method apparently has rapid convergence ability and excellent stability, and the results of the paper are closely agreed with those obtained by FEM and published literatures.

특정 고조파 제거를 위한 Cascaded H-bridge 7레벨 인버터의 특성해석 및 시뮬레이션 (Analysis and simulation of Cascaded H-bridge 7 level inverter for eliminating typical harmonic waveforms)

  • 진선호;오진석;조관준;곽준호;임명규;김장목
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.1022-1028
    • /
    • 2005
  • This paper is presented the analysis results and simulation results of cascaded H-bridge 7 level inverter with various modulation index. Stepped waveform having number of switching was used to eliminate harmonic components. Switching angles according to modulation index are calculated numerically. Therefore, 3 times of switching with 7 level topology and QWS(Quarter Wave Symmetry) could eliminate 5th and 7th harmonics. The harmonic characteristics are compared to those of space vector modulation method which known as common modulation method in industrial field. Stepped waveform method showed higher ability to reduce, especially lower order of harmonics.

  • PDF

머리전달함수 측정법의 실험적 비교 (Comparison of Measurement Methods for Head-related Transfer Function(HRTF))

  • 안태수;이두호
    • 한국소음진동공학회논문집
    • /
    • 제19권12호
    • /
    • pp.1260-1268
    • /
    • 2009
  • Three methods(the stepped sine method, the statistical method(random excitation method) and the maximum-length sequence(MLS) method) for head-related transfer functions(HRTFs) are experimentally compared in view point of accuracy and efficiency. First, the stepped sine method has high signal-to-noise ratio, but low efficiency. Second, the statistical method is fast measurement speed, but weak to noise than the other methods. Finally, the MLS method shows both good efficiency and high signal-to-noise ratio, but it needs additional software or equipment such as MLS signal generator. For comparison of measurement accuracy, HRTFs of KEMAR dummy are measured for various azimuths and elevations. Error norms for magnitude and phase of HRTFs are defined and calculated for the measured HRTFs. The calculated error norms show that the methods give similar results in magnitude and phase except a little phase difference in the MLS method.

NUMERICAL SOLUTION OF A CONSTRICTED STEPPED CHANNEL PROBLEM USING A FOURTH ORDER METHOD

  • Mancera, Paulo F. de A.;Hunt, Roland
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제3권2호
    • /
    • pp.51-67
    • /
    • 1999
  • The numerical solution of the Navier-Stokes equations in a constricted stepped channel problem has been obtained using a fourth order numerical method. Transformations are made to have a fine grid near the sharp corner and a long channel downstream. The derivatives in the Navier-Stokes equations are replaced by fourth order central differences which result a 29-point computational stencil. A procedure is used to avoid extra numerical boundary conditions near the solid walls. Results have been obtained for Reynolds numbers up to 1000.

  • PDF

비보존력이 작용하는 불연속 변단면 기둥의 안정성 (Stability of Stepped Columns Subjected to Nonconservative Force)

  • 오상진;모정만;이재영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.801-804
    • /
    • 2006
  • The purpose of this paper is to investigate the stability of stepped cantilever columns with a tip mass of rotatory inertia and a translational spring at one end. The column model is based on the Bernoulli-Euler theory which neglects the effects of rotatory inertia and shear deformation. The governing differential equation for the free vibration of columns with stepwise variable cross-section and subjected to a subtangential follower force is solved numerically using the corresponding boundary conditions. And the bisection method is used to calculate the critical divergence/flutter load. The frequency and critical divergence/flutter load for the stepped column with a single step are presented as functions of various non-dimensional system parameters: the segmental length parameter, the section ratio, the subtangential parameter, the mass, the moment of inertia of the mass, and the spring parameter.

  • PDF

계단시편의 간극이 단열전단밴드의 형성에 미치는 영향 (Effects of Clearance on the Formation of Adiabatic Shear Band in Stepped Specimen)

  • 유요한;전기영;정동택
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1700-1709
    • /
    • 1993
  • The stepped specimen which is subjected to step loading is modeled to study the initiation and growth of adiabatic shear band using explicit time integration finite element method. Three different clearance sizes are tested. The material model for the stepped specimen includes effects of strain hardening, strain rate hardening and thermal softening. It is found that the material inside the fully grown adiabatic shear band experiences three phase of deformation, (1) homogeneous deformation phase, (2) initiation/incubation phase, and (3) fast growth phase. The second phase of deformation is initiated after sudden shear stress drop which occurs at the same time regardless of the clearance size. The incubation time prior to fast growth phase increases, as the clearance size of the stepped specimen increases. Whereas, after incubation period, the growth rate of the adiabatic shear band decreases, as the clearance size decreases. It is also found that two adiabatic shear band may develop instead of one for the smaller clearance size.

온도 변화에 안정한 유전체 Stepped-Impedance Resonator의 정확한 설계 (The Accurate design of a Temperature stable Dielectric Stepped-Impedance Resonator)

  • 임상규;김덕환안철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.625-628
    • /
    • 1998
  • This paper presents the design method of a temperature stable stepped-impedance resonator using composite material. In this method temperature coefficient of dielectric constant $(\tau\varepsilon)$ and thermal expansion coefficient $(\alpha1)$ of dielectric material were considered. Ba(Zn1/3Nb2/3)O3 and CaZrO3 as composite material having opposite signs of temperature coefficient of dielectric constant were selected. The length of this resonator for the temperature stability of resonance frequency was calculated at 900MHz, 1.4㎓ and 1.9㎓. It was found that the ratio of the length of positive $\tau\varepsilon$ materal to the length of negative $\tau\varepsilon$ material is constant at various resonance frequencies.

  • PDF

불연속 변화단면 수평 곡선보의 자유진동 (Free Vibrations of Stepped Horizontally Curved Beams)

  • 이병구;진태기;김선기;신성철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.341-348
    • /
    • 2000
  • The differential equations governing the free vibrations of stepped horizontally circular curved beams with circular cross-section are derived and solved numerically. In numerical method, the Runge-Kutta and Determinant Search methods are used for computing the natural frequencies and mode shapes. Frequencies and mode shapes are reported as the functions of non-dimensional system parameters. The numerical method developed herein for computing frequencies and mode shapes are efficient and reliable.

  • PDF

Non linear vibrations of stepped beam system under different boundary conditions

  • Ozkaya, E.;Tekin, A.
    • Structural Engineering and Mechanics
    • /
    • 제27권3호
    • /
    • pp.333-345
    • /
    • 2007
  • In this study, the nonlinear vibrations of stepped beams having different boundary conditions were investigated. The equations of motions were obtained using Hamilton's principle and made non dimensional. The stretching effect induced non-linear terms to the equations. Forcing and damping terms were also included in the equations. The dimensionless equations were solved for six different set of boundary conditions. A perturbation method was applied to the equations of motions. The first terms of the perturbation series lead to the linear problem. Natural frequencies for the linear problem were calculated exactly for different boundary conditions. Second order non-linear terms of the perturbation series behave as corrections to the linear problem. Amplitude and phase modulation equations were obtained. Non-linear free and forced vibrations were investigated in detail. The effects of the position and magnitude of the step, as well as effects of different boundary conditions on the vibrations, were determined.