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Free Vibrations of Stepped Horizontally Curved Beams
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Abstract

The differential equations governing the free vibrations of stepped horizontally circular curved beams
with circular cross-section are derived and solved numerically. In numerical method, the Runge-Kutta
and Determinant Search methods are used for computing the natural frequencies and mode shapes.
Frequencies and mode shapes are reported as the functions of non-dimensional system parameters. The
numerical method developed herein for computing frequencies and mode shapes are efficient and reliable.
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1. INTRODUCTION

Studies on the free vibrations of linearly elastic curved beams of various geometries have been

reported by many investigators.(” @

However, the works on the free vibration of horizontally curved
beam with variable cross-section, especially stepped curved beams, are very rare. The main purpose of
the present paper is, therefore, to present numerical method for calculating the natural frequencies and
mode shapes of stepped horizontally curved beams.

The differential equations were derived for free, out-of-plane vibration of linearly elastic circular
curved beam with variable cross-section, and the stepped curved beam with circular cross-section was
applied into this differential equations. The governing differential equations were solved numerically to
obtain the natural frequencies and mode shapes. In numerical method, the Runge-Kutta and the
Determinant Search methods were used to integrate the differential equations and calculate the natural
frequencies, respectively. In numerical examples, the curved beams with both clamped ends and both
hinged ends were considered. The four lowest natural frequencies were presented as functions of the

non-dimensional system parameters.
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2. MATHEMATICAL MODEL

The geometry of stepped horizontally circular éurved beam is defined in Figure 1. Both ends are
either clamped or hinged. Its radius and opening angle are @ and a, respectively. The radial line to a
typical beam point is inclined at angle € with the radial line of left end. Also shown in Figure 1 are
positive direction of vertical displacement v, positive directions of rotation ¢ and B of cross-section
due to the bending moment and shear force, respectively, and positive direction of angle of twist ¢.
The beam is sectored into several segments for the stepped cross-section. The segment ratio which is
defined as a ratio of the subtended angle of ith segment to the opening angle @ is depicted as m,.
The thickness, cross-sectional area, area moment of inertia and torsional constant of cross-section of the
ith segment are D;, A;, I; and J;(i=1,2,3, -, n), respectively.

The quantities A;, I; and J; of the 7th segment are expressed in the form

AZA G Li=hg, Ji=hh (1-3)

where fi=AR60), g,=g(0) and h;=h(6) are the functions of the single variable 6 in the ith

segment as discussed later in shape functions of the section 3.

D, 4,1,

Ay
‘\clamped/"hinged
\ 1

clamped/hinged

Fig. 1 Geometry of curved beam Fig. 2 Loads on a curved beam element

A small element of the curved beam with the opening angle df and arc length ds shown in Figure
2 defines the positive directions for the shear force @, the bending moment M, the torsional moment
T, the vertical inertia force F, and the rotatory inertia couple C,. With the inertia force and the
rotatory inertia couple treated as eguivalent static quantities, the three equations for dynamic equilibrium

of element are

dQ _ o4 dM _ - _dT _ )
I —aF,=0, S5 —0Q+T+aC, =0, M—-%5 =0 (4-6)
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The equations that relate M and T to the rotations ¢ and ¢ are as follows.”

e o) = E2E(s- ). 7 Lo h) (o) o

where £ and G are the Young’'s modulus and shear modulus, respectively.

The transverse shear force @, whose effect on the structural behavior is known as the effect of
shear deformation, is given by(ﬁ)

Q=HIGA = kGA (%% — y) ©)

where k& is the cross-sectional shape factor. For example, the % values for the rectangular and circular
sections are 2/3 and 3/4, respectively.
The beam is assumed to be in harmonic motion, or each co-ordinate is proportional to sin(w?)

where ® is the frequency parameter and ¢ is time. The inertia loadings per unit arc length are then
F,=—dAo’v =—dA, fo'v, C,=- dlaw’$ =— dI, gaw?y (10,11)

where d is mass density of beam material. The Cy; term of equation (11) is known as the effect of

rotatory inertia in free vibrations.

To facilitate the numerical studies, the following non-dimensional system parameters are defined.
a 2
=vla, A= , y= , e=GIL/(EL), p;= w; vV dA E 12-
7=vla, A 7—11/ y y=kG/E, e=GJ\/(EL)), p;=w;a /(EL) (12-16)

The vertical displacement v is normalized by the curved beam radius @ and the variables of A, 7, ¢
and p; are the slendermness ratio, shear parameter, stiffness parameter and frequency parameter,
respectively.

When equations (9) and (10) are substituted into equation (4) and the non-dimensional forms of
equations (12)-(16) are used, the result is

dzy___l__di_d_ﬂ__l.g. dy . 1 _df
@~ Fdo d8 T T AE" a6 T Fde ¢ an

When equations (7), (8), (9) and (11) are substituted into equation (5) and the non-dimensional
forms of equations (12)-(16) are used, the result is
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&6 of dp_ 1. dg db [ of . h_ 0%
- " g de g dg ag T\ gt T 2 )¢

b\ dé 1 de
+(1+Eg)d0+g & (18)

When equations (7) and (8) are substituted into equation (6) and the non-dimensional forms of
equations (12)~(16) are used, the result is

d (1, &g\db_1 dh(,, dé\, 1lg
6 (H sh> d6 d0(¢+ d0)+e w? (19)

For the beam with both clamped ends, the boundary conditions at ends =0 and 6= g are
7=0, dy/d6=0, =0 (20-22)

"For the beam with both hinged ends, the boundary conditions at ends =0 and 6= @ are
7=0, d¢/d=0, ¢=0 (23-25)

3. SHAPE FUNCTIONS: f, g and &

The shape functions f, g and % first introduced in equations (1), (2) and (3), and contained in
the governing differential equations (17), (18} and (19), are now defined. The examples are limited
circular cross-section whose diameter of ith segment is [; mentioned above already. A non-dimensional

system parameter defined as the section ratio is introduced newly as follows.
n;=D;/ Dy (26)

in which it is clear that the value of #, is one because of #;=D;/D;=1.
With equations (1), (2), (3) and (26), the f;, &; and A; of the circular cross-section for the ith

segment are expressed in term of section ratio #; as follows.
fi= ng, gi= h= né‘ (27,28)
When equations (27) and (28) are differentiated once, the results are

df/ d=0, dg/dé= dh[df=0 ' (29)
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4. NUMERICAL METHOD AND COMPUTED RESULTS

Based on the above analysis, a general FORTRAN computer program was written to calculate p;,
=160, ¢=¢{6) and$=¢,(6). The numerical method described by Oh et al” was used to

solve the differential equations (17)-(19), subjected to the end constraint equations (20)-(22) or (23)-(25).
The curved beams with both clamped ends and both hinged ends were considered for given parameters

@, m;, #n;, A, v and €. First, the Runge-Kutta method was used to integrate the differential
equations; and then the Determinant Search method was used to calculate the characteristic values p;.
In this study, the shear parameter 7y and stiffness parameter & were chosen as 0.29 and 0.77,
respectively, since the cross-section was circular with 2=3/4 and J;=2I,, and the material was
assumed to be steel with G/E=0.385. The four lowest values of p; with their corresponding mode

shapes were calculated.
For numerical examples, suitable convergence of solutions was obtained for an increment of

40= a/50 in Runge-Kutta method. The convergence criterion was that p; solutions obtained with the
a/50 increment agreed with those obtained with the @/300 increment to within three significant

figures. The numerical results, given in Table 1 and Figures 3-7, are summarized as follows.
For the comparison purposes, the finite element solutions based on the commercial package SAP 90

were used to compute the freqﬁency parameters p;. The results are shown in Table 1 in which the

frequencies of this study agree closely with those of SAP 90 within a tolerance of 3%.

Table 1 Comparison of frequency parameters p; between this study and SAP 90
(@=60°, my=my=m3=0.33, ny,=1.2, n3=1, 1=80, r=0.29, e=0.77)

End constraints ; Frequency parameter, p; Deviation (%)
this_study(A) SAP 90(B) IB-AVA
both clamped ends 1 19.89 20.09 1.01
2 58.32 59.97 2.83
3 112.1 1104 1.52
4 1795 180.9 0.78
both hinged ends 1 7.528 7.589 0.81
2 36.98 36.26 1.94
3 81.34 82.18 1.03
4 142.2 141.2 0.70

It is shown in Figure 3, for which both clamped ends and both hinged ends with a=60°,
my=my=m3=0.33, n3=1, 4=80, r=0.29, £=0.77 that the frequency parameters p;
increase as the section ratio %y increases to 3. It is observed that the increasing rate of p; vs. #y

curves is higher at higher mode. Particularly, the increasing rate of first mode is negligible.
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It is shown in Figure 4, for which both clamped ends and both hinged ends with a”= 60°,
my=my=(1—my)/2, ny;=1.2, n3=1, 2=80, 7=0.29, &=0.77, that the p, values
increase as the segment ratio iy increases. It is noted that in case of the first mode of the both

hinged ends, the effect of my; on p; is negligible.

300 300
J a=60°m,=m,;=m,=0.33, n,=] ] a=60° m,=m,=(1-my/2, n,=1.2, n;=1
1 A=80. y=0.29, £=0.77 3 A=80. y=0.29, £=0.77
250 4 : clamped-clamped ends 250 — : clamped-clamped endss
i [P : hinged-hinged ends o = : hinged-hinged ends
Ji=12 3 4:frombottom to 1op qi=123 4: from bottom 10 top
200 200 —_/__/’_/
3 _ 1. : e
s, 150 & 150 et
1003 100 —:——‘/—————/‘:
50-}
() TIT 17T I TVUF l—[_l TT_U—[ Tt r' Frry ‘ TTrer 0 -:-l-r-'_l_::r-'-'-;:-l-:;]:-:;r-l-l-::-
0.0 0.5 1.0 15 2.0 2.5 3.0 0.0 02 0.4 0.6 0.8 1.0
n; ; m;
Fig. 3 p; vs. my curves Fig. 4 p; vs. my curves

It is shown in Figure 5, for which both clamped and both hinged beams with a=60°,
my=my=my=0.33, ny=1.2, ny3=1, y=0.29, €=0.77, that the p; values increase and
approach upper limits or horizontal asymptotes as the slenderness ratio ‘A increases to 200. It is noted

that in case of the first modes, the effect of A on p; is negligible.

300 300 0
J «=60° m;=m,=m;=0.33, n,=1.2, n,=1 3 m=my=m,=0.33, n,=1.2. n;=1
Jy=029 =077 j :. 1=80,7y=0.29, £=0.77
250 3 : clamped-clamped ends 250 3 : clamped-clamped ends
i : hinged-hinged ends 1 ===~ hinged-hinged ends
j i=1 2 3 4:from bottom to top . i=1 2 3 4: from boittom o top
200 - 200
& 150 s, 150 3
]
100 100 3
R ]
50 5 50
] p o
0 ] L L L I LI N B ) ‘ T ‘ L LA AL 0-: --------------
0 50 100 150 200 0 30 60 9 120 IS0 180°
A a
Fig. 5 p; vs. A curves Fig. 6 p; vs. a curves
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In Figure 6, both clamped ends, both hinged ends, m;=my=m3=0.33, n;=1.2, n3=1,
A=80, r=0.29, €=0.77 and the p; values all decrease very rapidly as the opening angle @
increases from 30° to 90°. And it is true that the p; values approach lower limits or hon'iontal

asymptotes as @ increases to 180°.
Typical mode shapes are shown in Figure 7, based on both clamped ends and both hinged ends,
my=my=m3=0.33, n,=1.2, nz3=1, A=80, r=0.29, e=0.77, a=60°.

pi=19.89 pi=7.528
(a) both clamped ends (b) both hinged ends
Fig. 7 Example of mode shapes( @=60°, m,=my=m3=0.33, n,=1.2, ny3=1,
A=80, v=0.29, e=0.77) —— v, -------- L, e L¢)

6. CONCLUSIONS

The method presented here for calculating frequencies and mode shapes for stepped horizontally
circular curved beams were found to be efficient and reliable over a wide range of system parameters.
Governing differential equations for free vibration of such curved beam were derived and solved
numerically. Computations showed that the frequencies obtained by present study and SAP 90 agreed

closely. The lowest four frequency parameters are presented as functions of four non-dimensional system
parameters.
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