• Title/Summary/Keyword: Step-up Converter

Search Result 258, Processing Time 0.024 seconds

Double Step-Up PFC Converter Using Asymmetrical PWM Scheme (비대칭 PWM 방식을 이용한 이중 승압 기능을 갖는 PFC 컨버터)

  • Yeongjin Kim;Jaeseong Lim;Honnyong Cha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.8-14
    • /
    • 2023
  • This paper proposes a PFC converter with a double step-up function using an asymmetrical PWM scheme. For the conventional PWM scheme, the input voltage range, which maintains a double step-up function, is limited because the proposed converter has different voltage gains and characteristics when the duty ratio(D) is less than 0.5. The proposed converter has a constant voltage gain regardless of the magnitude of the input voltage and can achieve output voltage balancing by using the asymmetrical PWM scheme. A 1.6-kW prototype of the proposed converter was built and tested to verify the performance.

Low-Cost High-Efficiency Two-Stage Cascaded Converter of Step-Down Buck and Tapped-Inductor Boost for Photovoltaic Micro-Inverters (태양광 마이크로 인버터를 위한 탭인덕터 부스트 및 강압형 컨버터 캐스케이드 타입 저가형 고효율 전력변환기)

  • Jang, Jong-Ho;Shin, Jong-Hyun;Park, Joung-Hu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.157-163
    • /
    • 2014
  • This paper proposes a two-stage step-down buck and a tapped-inductor boost cascaded converter for high efficiency photovoltaic micro-inverter applications. The proposed inverter is a new structure to inject a rectified sinusoidal current into a low-frequency switching inverter for single-phase grid with unity power factor. To build a rectified-waveform of the output current. the converter employs both of a high efficiency step-up and a step-down converter in cascade. In step-down mode, tapped inductor(TI) boost converter stops and the buck converter operates alone. In boost mode, the TI converter operates with the halt of buck operation. The converter provides a rectified current to low frequency inverter, then the inverter converts the current into a unity power-factor sinusoidal waveform. By applying a TI, the converter can decrease the turn-on ratios of the main switch in TI boost converter even with an extreme step-up operation. The performance validation of the proposed design is confirmed by an experimental results of a 120W hardware prototype.

Analysis and Implementation of LC Series Resonant Converter with Secondary Side Clamp Diodes under DCM Operation for High Step-Up Applications

  • Jia, Pengyu;Yuan, Yiqin
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.363-379
    • /
    • 2019
  • Resonant converters have attracted a lot of attention because of their high efficiency due to the soft-switching performance. An isolated high step-up converter with secondary-side resonant loops is proposed and analyzed in this paper. By placing the resonant loops on the secondary side, the current stress for the resonant capacitors is greatly reduced. The power loss caused by the equivalent series resistance of the resonant capacitor is also decreased. Clamp diodes in parallel with the resonant capacitors ensure a unique discontinuous current mode in the converter. Under this mode, the active switches can realize soft-switching during both turn-on and turn-off transitions. Meanwhile, the reverse-recovery problems of diodes are also alleviated by the leakage inductor. The converter is essentially a step-up converter. Therefore, it is helpful for decreasing the transformer turn-ratio when it is applied as a high step-up converter. The steady-state operation principle is analyzed in detail and design considerations are presented in this paper. Theoretical conclusions are verified by experimental results obtained from a 500W prototype with a 35V-42V input and a 400V output.

A Novel Clamp-Mode Coupled-Inductor Boost Converter with High Step-Up Voltage Gain

  • Tattiwong, Kaweewat;Bunlaksananusorn, Chanin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.809-819
    • /
    • 2017
  • In this paper, a new coupled inductor DC-DC converter with a high step-up voltage gain is proposed. It is developed from a clamp-mode coupled-inductor boost converter by incorporating an additional capacitor and diode. The proposed converter is able to achieve the higher voltage gain, while still retaining the switch voltage clamp property of its predecessor. In the paper, operation and analysis of the proposed converter are described. Experimental results from a prototype converter are presented to verify the validity of the analysis. The prototype circuit attains the highest efficiency of 92.8%.

An Isolated High Step-Up Converter with Non-Pulsating Input Current for Renewable Energy Applications

  • Hwu, Kuo-Ing;Jiang, Wen-Zhuang
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1277-1287
    • /
    • 2016
  • This study proposes a novel isolated high step-up galvanic converter, which is suitable for renewable energy applications and integrates a boost converter, a coupled inductor, a charge pump capacitor cell, and an LC snubber. The proposed converter comprises an input inductor and thus features a continuous input current, which extends the life of the renewable energy chip. Furthermore, the proposed converter can achieve a high voltage gain without an extremely large duty cycle and turn ratio of the coupled inductor by using the charge pump capacitor cell. The leakage inductance energy can be recycled to the output capacitor of the boost converter via the LC snubber and then transferred to the output load. As a result, the voltage spike can be suppressed to a low voltage level. Finally, the basic operating principles and experimental results are provided to verify the effectiveness of the proposed converter.

Two-Switch Non-Isolated Step-Up DC-DC Converter

  • Nguyen, Minh-Khai;Choi, Youn-Ok;Cho, Geum-Bae;Lim, Young-Cheol
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.651-661
    • /
    • 2018
  • This paper suggests a new non-isolated high voltage gain DC-DC converter with two switches. The proposed two-switch converter has the following characteristics: a high voltage gain, a continuous input current with a small ripple, a reduction in the size of the inductor, and a simple circuit with only a few elements. A theoretical analysis, guidelines for parameter selection, and a comparison with conventional non-isolated high step-up converters are presented. A prototype of 250 W is set up to demonstrate the correctness of the proposed converter. Results obtained from simulations and experiments are presented.

A Study on the Step-up PWM Cycloconverter (승압형 PWM 싸이크로 콘버터에 관한 연구)

  • 박민호;홍순찬;김기택
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.6
    • /
    • pp.431-440
    • /
    • 1989
  • This paper proposes a new PWM cycloconverter which can step up input voltage. With input reactors ac power supply acts as current source, and with output capacitors the balanced output voltage is build-up. The converter is modeled with fourth order state equation using dq transformation and the steady state characteristics are evaluated. It is shown that the proposed converter can generate the output voltage 2-5 times greater than input voltage. The output voltage and input current have sinusoidal and smooth waveforms and the converter is capable of voltage build-up. The characteristics of the proposed converter is verified simulation and experiment.

  • PDF

A Study on the Step-Up Converter with the New Topology Method (새로운 Topology 방식의 스텝 업(Step-Up) 컨버터에 관한 연구)

  • Jung, Hai-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.889-896
    • /
    • 2020
  • In general, there are various types of boost converters such as Boost converters, Buck-Boost converters, Flyback converters, Push-Pull converters, etc. Among them, Boost converters are the most widely used and step up converters in a very simple form. However, Boost converter has DCM mode operation, big ripple problem and RHPZ problem. In order to solve these problems, a converter to which the new topology was applied was presented, but among them, the KY converter improved the Boost converter's DCM mode operation, the big ripple problem and the RHPZ problem. However, the conventional KY converter has a drawback that the voltage gain is relatively lower than that of the Boost converter. Therefore, in this paper, we proposed a new KY converter that solves the problem of low voltage gain while having the advantages of the conventional KY converter.

Single-Phase Z-Source Matrix Converter (SZMC) with Output Voltage Boost Capability

  • Nguyen, Minh-Khai;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.234-237
    • /
    • 2008
  • This paper deals with a new single-phase Z-source matrix converter (SZMC) topology. Unlike other conventional configurations, the proposed SZMC is not only a step-up frequency converter but also a step-down frequency converter and a voltage boost capability. Thus, the proposed SZMC is also called a frequency step-up/down and voltage step-up converter. A safe-commutation strategy is used in SZMC as free-wheeling operation to eliminate voltage spikes on switches. The operating principles and experimental results of the proposed SZMC are presented.

  • PDF

High Efficiency High-Step-up Single-ended DC-DC Converter with Small Output Voltage Ripple

  • Kim, Do-Hyun;Kim, Hyun-Woo;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1468-1479
    • /
    • 2015
  • Renewable energy resources such as wind and photovoltaic power generation systems demand a high step-up DC-DC converters to convert the low voltage to commercial grid voltage. However, the high step-up converter using a transformer has limitations of high voltage stresses of switches and diodes when the transformer winding ratio increases. Accordingly, conventional studies have been applied to series-connect multioutput converters such as forward-flyback and switched-capacitor flyback to reduce the transformer winding ratio. This paper proposes new single-ended converter topologies of an isolation type and a non-isolation type to improve power efficiency, cost-effectiveness, and output ripple. The first proposal is an isolation-type charge-pump switched-capacitor flyback converter that includes an extreme-ratio isolation switched-capacitor cell with a chargepump circuit. It reduces the transformer winding number and the output ripple, and further improves power efficiency without any cost increase. The next proposal is a non-isolation charge-pump switched-capacitor-flyback tapped-inductor boost converter, which adds a charge-pump-connected flyback circuit to the conventional switched-capacitor boost converter to improve the power efficiency and to reduce the efficiency degradation from the input variation. In this paper, the operation principle of the proposed scheme is presented with the experimental results of the 100 W DC-DC converter for verification.