• Title/Summary/Keyword: Step wedge

Search Result 91, Processing Time 0.022 seconds

Physical properties of novel composite using Portland cement for retro-filling material (치근단 역충전용 포틀랜드 시멘트 신복합재료의 물리적 성질 고찰)

  • Lee, Sang-Jin;Cho, Ok-In;Yum, Ji-Wan;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.6
    • /
    • pp.445-452
    • /
    • 2010
  • Objectives: The aim of this study was to compare apical sealing ability and physical properties of MTA, MTA - AH-plus mixture (AMTA) and experimental Portland cement - Epoxy resin mixture (EPPC) for a development of a novel retro-filling material. Materials and Methods: Forty-nine extracted roots were instrumented and filled with gutta-percha. Apical root was resected at 3 mm and the retro-filling cavity was prepared for 3 mm depth. Roots were randomly divided into 3 groups of 15 roots each. The retro-filling was done using MTA, AMTA, and EPPC as the groups divided. Four roots were used as control groups. After setting in humid condition for 24 hours, the roots were immersed in 1% methylene blue dye solution for 72 hours to test the apical leakage. After immersion, the roots were vertically sectioned and photos were taken to evaluate microleakage. Setting times were measured with Vicat apparatus and digital radiographs were taken to evaluate aluminum equivalent thickness using aluminum step wedge. The results of microleakage and setting time were compared between groups using one-way ANOVA and Scheffe's post-hoc comparison at the significance level of 95%. Results: AMTA and EPPC showed less microleakage than MTA group (p < 0.05). AMTA showed the highest radio-opacity than other groups and the novel EPPC showed 5 mm aluminum thickness radio-opacity. EPPC showed the shortest initial and final setting times than other groups while the MTA showed the longest (p < 0.05). Conclusions: Under the condition of this study, the novel composite using Portland cement-Epoxy resin mixture may useful for retro-filling with the properties of favorable leakage resistance, radio-opacity and short setting time.

Evaluation of Bone Change by Digital Subtraction Radiography after Implantation of Tooth Ash-plaster Mixture (치아회분과 석고혼합제제 매식후 Digital Subtraction Radiography에 의한 골량 변화의 평가)

  • Kim Jae-Duk;Kim Kwang-Won;Cho Yaung-Gon;Kim Dong-Kie;Choi Eui-Hwan
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.2
    • /
    • pp.423-433
    • /
    • 1999
  • Purpose : To assess the methods for the clinical evaluation of the longitudinal bone changes after implantation of tooth ash-plaster mixture into the defect area of human jaws. Materials and methods : Tooth ash-plaster mixtures were implanted into the defects of 8 human jaws. 48 intraoral radiograms taken with copper step wedge as reference at soon, 1st, 2nd, 4th, and 6th week after implantation of mixture were used. X-ray taking was standardized by using Rinn XCP device customized directly to the individual dentition with resin bite block. The images inputted by Quick scanner were digitized and analyzed by NIH image program. Cu­equivalent values were measured at the implanted sites from the periodic digital images. Analysis was performed by the bidirectional subtraction with color enhancement and the surface plot of resliced contiguous image. The obtained results by the two methods were compared with Cu­equivalent value changes. Results : The average determination coefficient of Cu-equivalent equations was 0.9988 and the coefficient of variation of measured Cu values ranged from 0.08~0.10. The coefficient of variation of Cu-equivalent values measured at the areas of the mixture and the bone by the conversion equation ranged from 0.06 ~0.09. The analyzed results by the bidirectional subtraction with color enhancement were coincident with the changes of Cu-equivalent values. The surface plot of the resliced contiguous image showed the three dimensional view of the longitudinal bone changes on one image and also coincident with Cu-equivalent value changes after implantation. Conclusion : The bidirectional subtraction with color enhancement and the surface plot of the resliced contiguous image was very effective and reasonable to analyze clinically and qualitatively the longitudinal bone change. These methods are expected to be applicable to the non-destructive test in other fields.

  • PDF

Surgical Planning in Deformity Correction Osteotomies using Forward Kinematics and Inverse Kinematics (정기구학 및 역기구학을이용한하지 교정절골술 계획 생성)

  • Jeong, Jiwon;Lee, Seung Yeol;Youn, Kibeom;Park, Moon Seok;Lee, Jehee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • Patients with cerebral palsy or arthritis have deformities in lower limb which cause unstable gait or posture and pains. Surgeons perform a deformity correction osteotomy with surgical plan. But sometimes they find the unexpected angular or rotational deformation after surgery. The problems are that there is no method to predict the result of a surgical plan and also there are so many factors to must consider in surgical planning step such as clinical measurements, rotation angle, wedge angle, morphology of lower limb, etc. This paper presents new methods for planning the deformity correction osteotomy efficiently. There are two approaches based on the 3D mesh model and the accurate assessment of the patient's lower limb. One is the manual pre-simulation of surgery using forward kinematics. And the other is the automatic surgical planning using inverse kinematics and nonlinear optimization. Using these methods, we can predict and verify the results of various surgical treatments and also we can find a more effective surgical plan easily compared to conventional methods.

The useage of the EPID as a QA tools (EPID의 적정관리 도구로서의 유용성에 관한 연구)

  • Cho Jung Hee;Bang Dong Wan;Yoon Seong Ik;Park Jae Il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 1999
  • Purpose : The aim of this study is to conform the possibility of the liquid type EPID as a QC tools to clinical indication and of replacement of the film dosimetry. Aditional aim is to describe a procedure for the use of a EPID as a physics calibration tool in the measurements of radiation beam parameters which are typically carried out with film. Method & Materials : In this study we used the Clinac 2100c/d with EPID. This system contains 65536 liquid-filled ion chambers arranged in a $256{\times}256$ matrix and the imaging area is $32.5{\times}32.5cm$ with liquid layer thickness of 1mm. The EPID was tested for different field sizes under typical clinical conditions and pixel values were calibrated against dose by producing images using various thickness of lead attenuators(lead step wedge) using 6 & 10MV x-ray. We placed various thickness of lead on the table of linear accelerator and set the portal vision an SDD of 100cm. To acquire portal image we change the field size and energy, and we recorded the average pixel value in a $3{\times}3$ pixel region of interest(ROI) at field center was recorded. The pixel values were also measured for different field sizes in order to evaluate the dependence of pixel value on x-ray energy spectrum and various scatter components. Result : The EPID, as a whole, was useful as a QA tool and dosimetry device. In mechanical check, cross-hair centering was well matched and the error was less than ?2mm and light/radiation field coincidence was less than 1mm also. In portal dosimetry the wider the field size the the higher the pixel value and as the lead thickness increase, the pixel value was exponentially decreased. Conclusions : The EPID was very suitable for QA tools and it can be used to measure exit dose during patients treatment with reasonable accuracy. But when indicate the EPID to clincal study deep consideration required

  • PDF

A Study on Quantitative Thickness Evaluation Using Film Density Variation in Film Radiography (Film Radiography에서 농도차를 이용한 정량적 두께 평가에 관한 연구)

  • Lee, Sung-Sik;Lee, Jeong-Ki;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.5
    • /
    • pp.356-362
    • /
    • 1999
  • Based on the assumption that film density increases exponentially with exposure in the industrial radiographic film. an equation representing the characteristic curves of industrial radiographic films and a new density-thickness relation are suggested. The accuracy and reliability of the suggested relation has been tested using radiographs of a carbon steel step wedge with known thickness variation by polychromatic X-ray and ${\gamma}$-ray ($Ir^{192}$). The experimental results were well agreed to the proposed relation in the range of film densities from 1.0 to 3.5 and it was more accurate than the conventional relation. It is also found that ${\gamma}$-ray is more effective in this purpose than polychromatic X-ray, which results in variation of effective linear absorption coefficient due to beam hardening effect as thickness increases. Therefore using the equation and experimentally determined parameters the quantitative evaluation of thickness variation is possible and it can be used to evaluate the depth of local corrosion of pressure vessels in plants.

  • PDF

Breast Radiotherapy with Mixed Energy Photons; a Model for Optimal Beam Weighting

  • Birgani, Mohammadjavad Tahmasebi;Fatahiasl, Jafar;Hosseini, Seyed Mohammad;Bagheri, Ali;Behrooz, Mohammad Ali;Zabiehzadeh, Mansour;meskani, Reza;Gomari, Maryam Talaei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7785-7788
    • /
    • 2015
  • Utilization of high energy photons (>10MV) with an optimal weight using a mixed energy technique is a practical way to generate a homogenous dose distribution while maintaining adequate target coverage in intact breast radiotherapy. This study represents a model for estimation of this optimal weight for day to day clinical usage. For this purpose, treatment planning computed tomography scans of thirty-three consecutive early stage breast cancer patients following breast conservation surgery were analyzed. After delineation of the breast clinical target volume (CTV) and placing opposed wedge paired isocenteric tangential portals, dosimeteric calculations were conducted and dose volume histograms (DVHs) were generated, first with pure 6MV photons and then these calculations were repeated ten times with incorporating 18MV photons (ten percent increase in weight per step) in each individual patient. For each calculation two indexes including maximum dose in the breast CTV ($D_{max}$) and the volume of CTV which covered with 95% Isodose line ($V_{CTV,95%IDL}$) were measured according to the DVH data and then normalized values were plotted in a graph. The optimal weight of 18MV photons was defined as the intersection point of $D_{max}$ and $V_{CTV,95%IDL}$ graphs. For creating a model to predict this optimal weight multiple linear regression analysis was used based on some of the breast and tangential field parameters. The best fitting model for prediction of 18MV photons optimal weight in breast radiotherapy using mixed energy technique, incorporated chest wall separation plus central lung distance (Adjusted R2=0.776). In conclusion, this study represents a model for the estimation of optimal beam weighting in breast radiotherapy using mixed photon energy technique for routine day to day clinical usage.

Study on Performance Evaluation of Dental X-ray Equipment (치과 방사선 발생기의 성능평가에 관한 연구)

  • Jung, Jae-Eun;Jung, Jae-Ho;Kang, Hee-Doo;Lee, Jong-Woong;Ra, Keuk-Hwan
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.11 no.2
    • /
    • pp.115-119
    • /
    • 2009
  • I think this will be valuable reference for assuring consistency and homogeneity of clarity and managing dental radiation equipment by experimentation of dental radiation equipment permanent which based on KS C IEC 61223-3-4 standard and KS C IEC 61223-2-7. Put a dental radiation generator and experiment equipment as source and film(sensor) length within 30 em, place the step-wedge above the film(sensor). Tie up tube voltage 60 kVp, tube current 7 mA and then get an each image through CCD sensor and film by changing the exposure time as 0.12sec, 0.25sec, 0.4sec. Repeat the test 5times as a same method. Measure the concentration of each stage of film image, which gained by experiment, using photometer. And the image that gained by CCD sensor, analyze the pixel value's change by using image J, which is analyzing image program provided by NIH(National Institutes of Health). In case of film, while 0.12sec and 0.25sec show regular rising pattern of density gap as exposure time's increase, 0.4sec shows low rather than 0.12sec and 0.25sec. In case of CCD sensor density test, the result shows opposite pattern of film. This makes me think that pixels of CCD's sensor can have 0~255 value but it becomes saturation if the value is over 255. The way that getting clear reception during decreasing human's exposed radiation is one of maintaining an equipment as a best condition. So we should keeping a dental radiation equipment's condition steadily through cyclic permanent test after factor examination. Even digital equipment doesn't maintain a permanent, it can maintain a clarity by post processing of image so that hard to set it as standard of permanent test. Therefore it would be more increase the accuracy that compare a film as standard image. Thus I consider it will be an important measurement to care for dental radiation equipment and warrant homogeneity, consistency of dental image's clarity through comparing pattern which is the result from factor test against cyclic permanent test.

  • PDF

Effects on Patient Exposure Dose and Image Quality by Increasing Focal Film Distance in Abdominal Radiography (복부 일반촬영시 초점-필름간거리 변화가 피폭선량 및 화질에 미치는 영향)

  • Kim, You-Hyun;Kwon, Soo-Il
    • Journal of radiological science and technology
    • /
    • v.21 no.1
    • /
    • pp.52-58
    • /
    • 1998
  • We can and must improve the diagnostic images using available knowledge and technology. At the same time we must strive to reduce the patient's integral and entrance radiation dose. Reducing the integral dose to the patient during the radiologic procedure is a primary concern of the patient, especially the pediatric patient, the radiologist and the technologist. A 100cm focal film distance generally is used for most over-table radiography. The early x-ray tubes and screen film combinations required long exposures, which often resulted in motion artifacts. But nowaday, we have the generators and x-ray tubes that can deliver the energy necessary in a very short time and the receptors that can record the information just as rapidly. And, we performed this studies to evaluate the patient exposure dose and the image quality by increasing focal film distance in diagnostic radiography. There are many factors which affected to exposure factor, but we studied to verify of FFD increase, only. Effect of increasing the focal film distance to a 140 cm distance was tested as follows; 1. The focal film distances were set at 100, 120, and 140cm. 2. A 18cm acryl(tissue equivalent) phantom was placed on the table top. 3. An Capintec 192 electrometer with PM 05 ion chamber was placed at the entrance surface of the phantom, and exposure were made at each focal film distances. 4. The procedure was repeated in the same manner as above except the ion chamber was placed beneath the phantom at the film plane. 5. Exit exposure were normalize to 8mR for each portions of the experiment. Based on the success of the empirical measurements, a detailed mathematical analysis of the dose reduction was performed using the percent depth dose data. The results of this study can be summerized as followings ; 1) Increasing FFD from 100 cm to 140 cm, we would create a situation that would have a significant effect on the overall quality of radiograph and achive the 17.42% reduction of entrance dose and the 18.95% reduction of integral dose that the patient receives. 2) Thickness of Al step wedge for equal film density increased with the long distance. 3) Increasing FFD, Magnification of image was lowered. 4) Resolution of image also increased with the FFD. As the results described above, we strongly recommend using the long FFD to provide better information for our patients and profession in abdomen radiographic studies.

  • PDF

Comparison of the Efficacy of 2D Dosimetry Systems in the Pre-treatment Verification of IMRT (세기조절방사선치료의 환자별 정도관리를 위한 2차원적 선량계의 유용성 평가)

  • Hong, Chae-Seon;Lim, Jong-Soo;Ju, Sang-Gyu;Shin, Eun-Hyuk;Han, Young-Yih;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.27 no.2
    • /
    • pp.91-102
    • /
    • 2009
  • Purpose: To compare the accuracy and efficacy of EDR2 film, a 2D ionization chamber array (MatriXX) and an amorphous silicon electronic portal imaging device (EPID) in the pre-treatment QA of IMRT. Materials and Methods: Fluence patterns, shaped as a wedge with 10 steps (segments) by a multi-leaf collimator (MLC), of reference and test IMRT fields were measured using EDR2 film, the MatriXX, and EPID. Test fields were designed to simulate leaf positioning errors. The absolute dose at a point in each step of the reference fields was measured in a water phantom with an ionization chamber and was compared to the dose obtained with the use of EDR2 film, the MatriXX and EPID. For qualitative analysis, all measured fluence patterns of both reference and test fields were compared with calculated dose maps from a radiation treatment planning system (Pinnacle, Philips, USA) using profiles and $\gamma$ evaluation with 3%/3 mm and 2%/2 mm criteria. By measurement of the time to perform QA, we compared the workload of EDR2 film, the MatriXX and EPID. Results: The percent absolute dose difference between the measured and ionization chamber dose was within 1% for the EPID, 2% for the MatriXX and 3% for EDR2 film. The percentage of pixels with $\gamma$%>1 for the 3%/3 mm and 2%/2 mm criteria was within 2% for use of both EDR2 film and the EPID. However, differences for the use of the MatriXX were seen with a maximum difference as great as 5.94% with the 2%/2 mm criteria. For the test fields, EDR2 film and EPID could detect leaf-positioning errors on the order of -3 mm and -2 mm, respectively. However it was difficult to differentiate leaf-positioning errors with the MatriXX due to its poor resolution. The approximate time to perform QA was 110 minutes for the use of EDR2 film, 80 minutes for the use of the MatriXX and approximately 55 minutes for the use of the EPID. Conclusion: This study has evaluated the accuracy and efficacy of EDR2 film, the MatriXX and EPID in the pre-treatment verification of IMRT. EDR2 film and the EPID showed better performance for accuracy, while the use of the MatriXX significantly reduced measurement and analysis times. We propose practical and useful methods to establish an effective QA system in a clinical environment.

Three-Dimensional Limit Equilibrium Stability Analysis of Spile-Reinforced Shallow Tunnel

    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.101-122
    • /
    • 1997
  • A spiting reinforcement system is composed of a series of radially installed reinforcing spites along the perimeter of the tunnel opening ahead of excavation. The reinforcing spill network is extended into the in-situ soil mass both radially and longitudinally The sailing reinforcement system has been successfully used for the construction of underground openings to reinforce weak rock formations on several occasions. The application of this spiting reinforcement system is currently extended to soft ground tunneling in limited occasions because of lack of reliable analysis and design methods. A method of threetimensional limit equilibrium stability analysis of the smile-reinforced shallow tunnel in soft ground is presented. The shape of the potential failure wedge for the case of smile-reinforced shallow tunnel is assumed on the basis of the results of three dimensional finite element analyses. A criterion to differentiate the spill-reinforced shallow tunnel from the smile-reinforced deep tunnel is also formulated, where the tunnel depth, soil type, geometry of the tunnel and reinforcing spites, together with soil arching effects, are considered. To examine the suitability of the proposed method of threedimensional stability analysis in practice, overall stability of the spill-reinforced shallow tunnel at facing is evaluated, and the predicted safety factors are compared with results from twotimensional analyses. Using the proposed method of threetimensional limit equilibrium stability analysis of the smile-reinforced shallow tunnel in soft ground, a parametric study is also made to investigate the effects of various design parameters such as tunnel depth, smile length and wadial spill spacing. With slight modifications the analytical method of threeiimensional stability analysis proposed may also be extended for the analysis and design of steel pipe reinforced multi -step grouting technique frequently used as a supplementary reinforcing method in soft ground tunnel construction.

  • PDF