• Title/Summary/Keyword: Step response

Search Result 1,324, Processing Time 0.029 seconds

Comparative Study on Classical Control and Modern Control via Analysis of Circuit-based Time Response (회로망 기반의 시간응답 해석에 따른 고전제어와 현대제어의 비교 연구)

  • Min, Yong-Ki
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.575-584
    • /
    • 2017
  • It is suggested the circuit network to analyze the time response of control system. And it is analyzed the interrelation for classical control and modern control by the transfer function and the state equation. Without complicated integration of state transition equation, it is suggested to possible time response by combining the state transition matrix and the transfer function. A source program is coded to display the time response according to the unit-step and the sinusoidal input. Transient response is analyzed in the unit-step input and phase difference between current and voltage is analyzed in sinusoidal input. As writing the suggested contents in transient response or state-space analysis, it is improved the understanding for control engineering and ability for system design.

Development of Neural-Networks-based Model for the Generation of an Earthquake Response Spectrum and a Design Spectrum (지진 응답 스펙트럼과 설계용 응답 스펙트럼 생성을 위한 신경망 모델의 개발)

  • 조빈아;이승창;한상환;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.447-454
    • /
    • 1998
  • The paper describes the second half of the research for the development of Neural-Networks-based model for the generation of an Artificial earthquake and a Response Spectrum(NNARS). Based on the redefined traditional processes related to the generation of an earthquake acceleration response spectrum and design spectrum, four neural-networks-based models are proposed to substitute the traditional processes. RS_NN tries to directly generate acceleration response spectrum with basic data that are magnitude, epicentral distance, site conditions and focal depth. The test results of RS_NN are not good because of the characteristics of white noise, which is randomly generated. ARS_NN solve this problem by the introduction of the average concept. IARS_NN has a role to inverse the ARS_NN, so that is applied to generate a ground motion accelerogram compatible with the shape of a response spectrum. Additionally, DS_NN directly produces design spectrum with basic data. As these four neural networks are simulated as a step by step, the paper describes the methods to generate a response spectrum and a design spectrum using the neural networks.

  • PDF

Analysis of delay compensation in real-time dynamic hybrid testing with large integration time-step

  • Zhu, Fei;Wang, Jin-Ting;Jin, Feng;Gui, Yao;Zhou, Meng-Xia
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1269-1289
    • /
    • 2014
  • With the sub-stepping technique, the numerical analysis in real-time dynamic hybrid testing is split into the response analysis and signal generation tasks. Two target computers that operate in real-time may be assigned to implement these two tasks, respectively, for fully extending the simulation scale of the numerical substructure. In this case, the integration time-step of solving the dynamic response of the numerical substructure can be dozens of times bigger than the sampling time-step of the controller. The time delay between the real and desired feedback forces becomes more striking, which challenges the well-developed delay compensation methods in real-time dynamic hybrid testing. This paper focuses on displacement prediction and force correction for delay compensation in the real-time dynamic hybrid testing with a large integration time-step. A new displacement prediction scheme is proposed based on recently-developed explicit integration algorithms and compared with several commonly-used prediction procedures. The evaluation of its prediction accuracy is carried out theoretically, numerically and experimentally. Results indicate that the accuracy and effectiveness of the proposed prediction method are of significance.

Development of dynamic behavior of the novel composite T-joints: Numerical and experimental

  • Mokhtari, Madjid;Shahravi, Morteza;Zabihpoor, Mahmood
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.385-400
    • /
    • 2018
  • In this paper dynamic behavior (modal analysis and dynamic transient response) of a novel sandwich T-joint is numerically and experimentally investigated. An epoxy adhesive is selected for bonding purpose and making the step wise graded behavior of adhesive region. The effect of the step graded behavior of the adhesive zone on dynamic behavior of a sandwich T-joint is numerically studied. Finite element analysis (FEA) of the T-joints with carbon fiber reinforced polymer (CFRP) face-sheets is performed by ABAQUS 6.12-1 FEM code software. Modal analysis and dynamic half-sine transient response of the sandwich T-joint are presented in this paper. Two verification processes employed to verify the dynamic modeling of the manufactured sandwich panels and T-joint modeling. It has been shown that the step wise graded adhesive zone cases have changed the second natural frequency by about 5%. Also, it has been shown that the different arranges in the step wise graded adhesive zone significantly affect the maximum stresses due to transient dynamic loading by 1112% decrease in maximum peel stress and 691.9% decrease in maximum shear stress on the adhesive region.

A Study on the Decision Making Procedure of Clean-up Endpoints for Oiled Shorelines in Korea (우리나라 해안오염 방제종료 의사결정절차의 고찰)

  • Kim, Dong-Geun;Jeon, Hae-Jong;Kim, Jae-Dong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.24 no.5
    • /
    • pp.712-720
    • /
    • 2012
  • Recently, many problems related on shoreline response to spill oil were exposed again on a occasion of M/T Hebei spirit accident even though the weakness on the shoreline response system has been brought up since M/T Sea Prince oil spill accident. Therefore the establishment of shoreline response system that best suits our country is needed through considering the response system of well-developed country. The socioeconomic conflict between the persons concerned on the clean-up endpoints can be sharpened in Korea because the frequency of coastal use of our country is too high compared to other countries. Thus procedural justification, that is, how the clean-up endpoints be established is more important than what type of clean-up endpoints be used. In the present paper, we attempted to suggest a new manner on the decision making system for clean-up endpoints that best suits our country. The decision making system for clean-up endpoints need to be divided into two steps, that is, set-up step of clean-up endpoints criteria and decision step of clean-up endpoints. The decision making organization of local governments play a key role in case of set-up step of clean-up endpoints criteria, while the response command headquarters under Korean coast guard and decision making organization of local governments codecide whether the clean-up endpoints criteria is fits or not.

Criteria for processing response-spectrum-compatible seismic accelerations simulated via spectral representation

  • Zerva, A.;Morikawa, H.;Sawada, S.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.341-363
    • /
    • 2012
  • The spectral representation method is a quick and versatile tool for the generation of spatially variable, response-spectrum-compatible simulations to be used in the nonlinear seismic response evaluation of extended structures, such as bridges. However, just as recorded data, these simulated accelerations require processing, but, unlike recorded data, the reasons for their processing are purely numerical. Hence, the criteria for the processing of acceleration simulations need to be tied to the effect of processing on the structural response. This paper presents a framework for processing acceleration simulations that is based on seismological approaches for processing recorded data, but establishes the corner frequency of the high-pass filter by minimizing the effect of processing on the response of the structural system, for the response evaluation of which the ground motions were generated. The proposed two-step criterion selects the filter corner frequency by considering both the dynamic and the pseudo-static response of the systems. First, it ensures that the linear/nonlinear dynamic structural response induced by the processed simulations captures the characteristics of the system's dynamic response caused by the unprocessed simulations, the frequency content of which is fully compatible with the target response spectrum. Second, it examines the adequacy of the selected estimate for the filter corner frequency by evaluating the pseudo-static response of the system subjected to spatially variable excitations. It is noted that the first step of this two-fold criterion suffices for the establishment of the corner frequency for the processing of acceleration time series generated at a single ground-surface location to be used in the seismic response evaluation of, e.g. a building structure. Furthermore, the concept also applies for the processing of acceleration time series generated by means of any approach that does not provide physical considerations for the selection of the corner frequency of the high-pass filter.

Assessment of effect of material properties on seismic response of a cantilever wall

  • Cakir, Tufan
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.601-619
    • /
    • 2017
  • Cantilever retaining wall movements generally depend on the intensity and duration of ground motion, the response of the soil underlying the wall, the response of the backfill, the structural rigidity, and soil-structure interaction (SSI). This paper investigates the effect of material properties on seismic response of backfill-cantilever retaining wall-soil/foundation interaction system considering SSI. The material properties varied include the modulus of elasticity, Poisson's ratio, and mass density of the wall material. A series of nonlinear time history analyses with variation of material properties of the cantilever retaining wall are carried out by using the suggested finite element model (FEM). The backfill and foundation soil are modelled as an elastoplastic medium obeying the Drucker-Prager yield criterion, and the backfill-wall interface behavior is taken into consideration by using interface elements between the wall and soil to allow for de-bonding. The viscous boundary model is used in three dimensions to consider radiational effect of the seismic waves through the soil medium. In the seismic analyses, North-South component of the ground motion recorded during August 17, 1999 Kocaeli Earthquake in Yarimca station is used. Dynamic equations of motions are solved by using Newmark's direct step-by-step integration method. The response quantities incorporate the lateral displacements of the wall relative to the moving base and the stresses in the wall in all directions. The results show that while the modulus of elasticity has a considerable effect on seismic behavior of cantilever retaining wall, the Poisson's ratio and mass density of the wall material have negligible effects on seismic response.

Dynamic response of Euler-Bernoulli beams to resonant harmonic moving loads

  • Piccardo, Giuseppe;Tubino, Federica
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.681-704
    • /
    • 2012
  • The dynamic response of Euler-Bernoulli beams to resonant harmonic moving loads is analysed. The non-dimensional form of the motion equation of a beam crossed by a moving harmonic load is solved through a perturbation technique based on a two-scale temporal expansion, which permits a straightforward interpretation of the analytical solution. The dynamic response is expressed through a harmonic function slowly modulated in time, and the maximum dynamic response is identified with the maximum of the slow-varying amplitude. In case of ideal Euler-Bernoulli beams with elastic rotational springs at the support points, starting from analytical expressions for eigenfunctions, closed form solutions for the time-history of the dynamic response and for its maximum value are provided. Two dynamic factors are discussed: the Dynamic Amplification Factor, function of the non-dimensional speed parameter and of the structural damping ratio, and the Transition Deamplification Factor, function of the sole ratio between the two non-dimensional parameters. The influence of the involved parameters on the dynamic amplification is discussed within a general framework. The proposed procedure appears effective also in assessing the maximum response of real bridges characterized by numerically-estimated mode shapes, without requiring burdensome step-by-step dynamic analyses.

Design of the Discrete Compensator for Arbitrary Steady-State Response Using the Effects of Zero Location in Second-Order Discrete Systems (이차 이산 시스템에서 영점의 위치의 영향을 이용한 임의의 정상상태 응답을 위한 이산 보상저의 설계)

  • Lee, Jae-Seok;Chung, Tae-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.382-386
    • /
    • 2002
  • The damping ratio $\zeta$ of the unit-step response of a second-order discrete system is a function of only the location of the closed-loop poles and is not directly related to the location of the system zero. However, the peak overshoot of the response is the function of both the damping ratio $\zeta$ and an angle $\alpha$, which is the phasor angle of the damped sinusoidal response and is determined by the relative location of the zero with respect to the closed-loop poles. Accordingly, when the closed-loop system poles are fixed, the peak overshoot is considered as a function of the angle $\alpha$ or the system zero location. In this paper the effects of the relative location of the zero on the system performance of a second-order discrete system is studied, and a design method of digital compensator which achieves arbitrary steady-state response with minimum peak overshoot while maintaining the desired system mode and the damping ratio of the unit step response is presented.

  • PDF