• Title/Summary/Keyword: Step count

Search Result 136, Processing Time 0.028 seconds

Validation of Sanitation Management Standards for Vegetable Preparation with No-Cook Step Based on Microbiological Analysis (미생물 분석에 의한 채소류 비가열 조리공정의 위생관리 기준 유효성 평가)

  • Kim, Won-Kyeong;Ryu, Kyung
    • Journal of the Korean Dietetic Association
    • /
    • v.27 no.1
    • /
    • pp.45-58
    • /
    • 2021
  • This study evaluated the sanitation management standards for vegetable preparation processes without a cooking stage. The aerobic plate counts (APC), coliform counts, and Escherichia coli of the samples at each production step were analyzed, and microbial growth of the samples stored at different temperatures was measured. The validation was judged in accordance with the microbial criteria stipulated by the British PHLS. After washing and disinfection, the APCs of the two samples decreased to 3~4 log CFU/g in both seasons. Compared to the purchasing stage, the decrease in coliform counts was approximately 0~3 log CFU/g in both seasons; E. coli was not detected. The initial APC and coliform levels of two vegetable samples were 4~5 log CFU/g in both seasons, with an increase of 1 log CFU/g taking more than 6 h at 25℃ and 2 h at 35℃. More than 10 h at 25℃ and 6 h at 35℃ were required to increase the E. coli O157:H7 count by 1~2 log CFU/g for two seasoned samples. In conclusion, washing and disinfection effects and changes in microbial growth during room temperature storage were similar in the two vegetables. Despite the low sanitizing effect of the two vegetables, when cut vegetables were stored under the critical limit within 2 h at two different room temperatures, seasoned lettuce and chicory were at the 'satisfactory' or 'acceptable' levels of PHLS regardless of the storage temperatures. The validation of sanitation management standards applied to vegetable preparation with the no-cook step was approved.

Correction Algorithm for PDR Performance Improvement through Smartphone Motion Sensors (보행자 추측 항법 성능 향상을 위한 스마트폰 전용 모션 센서 보정 알고리즘)

  • Kim, Do Yun;Choi, Lynn
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.3
    • /
    • pp.148-155
    • /
    • 2017
  • In this paper, we develop a new system to estimate the step count for a smartphone user. The system analyzes data obtained from the accelerometer, magnetic sensor, and gyroscope of an android smartphone to extract pattern information of human steps. We conduct an experiment and evaluation to confirm that the proposed system successfully estimates the number of steps with 96% accuracy when hand-held and 95.5% accuracy when in-pocket. In addition, we found that detection errors were caused by human motions such as touching the screen, shaking the device up and down, sitting up and sitting down, and waving the phone around.

Conditional Branch Optimization in the Compilers for Superscalar Processors (수퍼스칼라 프로세서를 위한 컴파일러에서 조건부 분기의 최적화)

  • Kim, Myung-Ho;Choi, Wan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.2
    • /
    • pp.264-276
    • /
    • 1995
  • In this paper, a technique for eliminating conditional branches in the compilers for superscalar processors is presented. The technique consists of three major steps. The first step transforms conditional branches into equivalent expressions using algebraic laws. The second step searches all possible instruction sequences for those expressions using GSO of Granlund/Kenner. Finally an optimal sequence that has the least dynamic count for the target superscalar processor is selected from the GSO output. Experiment result shows that for each conditional branch is the input program matched by one of the optimization patterns, the proposed technique outperforms more than 25% speedup of execution time over the original code when the GNU C compiler and the SuperSPARC processor are used.

  • PDF

Electric Fatigue Behavior of a Bending Piezoelectric Composite Actuator (굽힘 압전 복합재료 작동기의 전기적 피로 거동)

  • Woo, Sung-Choong;Goo, Nam-Seo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.362-367
    • /
    • 2008
  • In the present work, we address electric fatigue behavior in bending piezoelectric actuators using an acoustic emission technique. Electric cyclic fatigue tests have been performed up to ten million cycles on the fabricated specimens. To confirm the fatigue damage onset and its pathway, the source location and distributions of the AE behavior in terms of count rate are analyzed over the fatigue range. It is concluded that electric cyclic loading leads to fatigue damages such as transgranular damages and intergranular cracking in the surface of the PZT ceramic layer, and intergranular cracking even develops into the PZT inner layer, thereby degrading the displacement performance. The electric-induced fatigue behavior seems to show not a continuous process but a step-by-step process because of the brittleness of PZT ceramic. Nevertheless, this fatigue damage and cracking do not cause the final failure of the bending piezoelectric actuator loaded up to 107 cycles. Investigations of the AE behavior and the linear AE source location reveal that the onset time of the fatigue damage varies considerably depending on the existence of a glass-epoxy protecting layer.

  • PDF

Gamma-ray Exposure Rate Monitoring by Energy Spectra of NaI(Tl) Scintillation detectors

  • Lee, Mo Sung
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.3
    • /
    • pp.158-165
    • /
    • 2017
  • Background: Nuclear facilities in South Korea have generally adopted pressurized ion chambers to measure ambient gamma ray exposure rates for monitoring the impact of radiation on the surrounding environment. The rates assessed with pressurized ion chambers do not distinguish between natural and man-made radiation, so a further step is needed to identify the cause of abnormal variation. In contrast, using NaI(Tl) scintillation detectors to detect gamma energy rates can allow an immediate assessment of the cause of variation through an analysis of the energy spectra. Against this backdrop, this study was conducted to propose a more effective way to monitor ambient gamma exposure rates. Materials and Methods: The following methods were used to analyze gamma energy spectra measured from January to November 2016 with NaI detectors installed at the Korea Atomic Energy Research Institute (KAERI) dormitory and Hanbat University. 1) Correlations of the variation of rates measured at the two locations were determined. 2) The dates, intervals, duration, and weather conditions were identified when rates increased by $5nSv{\cdot}h^{-1}$ or more. 3) Differences in the NaI spectra on normal days and days where rates spiked by $5nSv{\cdot}h^{-1}$ or more were studied. 4) An algorithm was derived for automatically calculating the net variation of the rates. Results and Discussion: The rates measured at KAERI and Hanbat University, located 12 kilometers apart, did not show a strong correlation (coefficient of determination = 0.577). Time gaps between spikes in the rates and rainfall were factors that affected the correlation. The weather conditions on days where rates went up by $5nSv{\cdot}h^{-1}$ or more featured rainfall, snowfall, or overcast, as well as an increase in peaks of the gamma rays emitted from the radon decay products of $^{214}Pb$ and $^{214}Bi$ in the spectrum. This study assumed that $^{214}Pb$ and $^{214}Bi$ exist at a radioactive equilibrium, since both have relatively short half-lives of under 30 minutes. Provided that this assumption is true and that the gamma peaks of the 352 keV and 1,764 keV gamma rays emitted from the radionuclides have proportional count rates, no man-made radiation should be present between the two energy levels. This study proved that this assumption was true by demonstrating a linear correlation between the count rates of these two gamma peaks. In conclusion, if the count rates of these two peaks detected in the gamma energy spectrum at a certain time maintain the ratio measured at a normal time, such variation can be confirmed to be caused by natural radiation. Conclusion: This study confirmed that both $^{214}Pb$ and $^{214}Bi$ have relatively short half-lives of under 30 minutes, thereby existing in a radioactive equilibrium in the atmosphere. If the gamma peaks of the 352 keV and 1,764 keV gamma rays emitted from these radionuclides have proportional count rates, no man-made radiation should exist between the two energy levels.

A Study on step number detection using smartphone sensors for position tracking (위치 추적을 위한 스마트폰 센서를 이용한 걸음 수 검출에 관한 연구)

  • Lee, Kwonhee;Kim, Kwanghyun;Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.119-125
    • /
    • 2018
  • Various techniques for indoor positioning using a smart phone have been studied. Among them, the positioning technology using the acceleration sensor and the gyro sensor built in the smartphone is widely used in conjunction with the WiFi fingerprint technology. The location tracking technology using sensors has been used for a long time, but the performance environment of the smartphone is poor and the user is moving with the smartphone in a certain posture. Therefore, in order to improve the accuracy of location tracking in a smartphone environment, it is necessary to study and develop appropriate algorithms in a mobile environment. In this paper, we analyze the performances of frequency analysis method, maximum sum of minimum acceleration method and adaptive threshold method, which are the user's moving step count detection algorithms, and determine the most accurate method.

Freezing Seawater for the Long-term Storage of Bacterial Cells for Microscopic Enumeration

  • Hyun, Jung-Ho;Yang, Eun-Jin
    • Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.262-265
    • /
    • 2003
  • Although enumerating bacterial cells is a fundamental step in understanding microbial ecosystems in marine environments, substantial decrease in bacterial counts with increasing sample storage time hampers the accurate estimation of bacterial biomass. We compared the variations in bacterial cell numbers caused by freezing and thawing of sample bottles or slides. Bacterial counts of seawater samples frozen only once in a sampling bottle yielded approximately 95% of the original numbers after 90 days, whereas 80% of the original count was obtained for samples prepared on slides. Only 67% and 58% of the original counts were recovered in samples repeatedly frozen and thawed in bottles or on slides, respectively. The results indicated that freezing a seawater sample in a bottle increased the consistency of the epifluorescence microscopic enumeration of bacterial cells.

Development of Image Analysis Techniques for Measuring Air Void System in Hardened Concrete (콘크리트 내부 공극 분석을 위한 화상분석기법의 개발)

  • Jun In-Ku;Lee Bong-Hak;Yun Kyong-Ku;Jeong Won-Kyong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.810-813
    • /
    • 2004
  • Air void systems in hardened concrete has an important influence on concrete durability such as freeze-thaw resistance, water permeability, surface scaling resistance, and etc. Linear traverse method and point count method described at ASTM have been widely used to estimate the air void system in hardened concrete. These methods, however, are rarely used at present, because they require many efforts, are time consuming works, depend on each person's decision, and are not repeatable. Thus, new image analysis method using microscope and computer processes has been approached for analyzing air void system in hardened concrete. However, it is just in initial step. The purposes of this study were to develope an effective and reliable image analysis technique for estimating air void system in hardened concrete. The developed technique was proved to be accurate, reasonable and repeatable.

  • PDF

Parameter Investigation for Powder Compaction using Discrete-Finite Element Analysis

  • Choi, Jinnil
    • Journal of Powder Materials
    • /
    • v.22 no.5
    • /
    • pp.337-343
    • /
    • 2015
  • Powder compaction is a continually and rapidly evolving technology where it is a highly developed method of manufacturing reliable components. To understand existing mechanisms for compaction, parameter investigation is required. Experimental investigations on powder compaction process, followed by numerical modeling of compaction are presented in this paper. The experimental work explores compression characteristics of soft and hard ductile powder materials. In order to account for deformation, fracture and movement of the particles, a discrete-finite element analysis model is defined to reflect the experimental data and to enable investigations on mechanisms present at the particle level. Effects of important simulation factors and process parameters, such as particle count, time step, particle discretization, and particle size on the powder compaction procedure have been explored.

Neuro-Fuzzy Approach for Software Reliability Prediction (뉴로-퍼지 소프트웨어 신뢰성 예측)

  • Lee, Sang-Un
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.4
    • /
    • pp.393-401
    • /
    • 2000
  • This paper explores neuro-fuzzy system in order to improve the software reliability predictability from failure data. We perform numerical simulations for actual 10 failure count and 4 failure time data sets from different software projects with the various number of rules. Comparative results for next-step prediction problem is presented to show the prediction ability of the neuro-fuzzy system. Experimental results show that neuro-fuzzy system is adapt well across different software projects. Also, performance of neuro-fuzzy system is favorably with the other well-known neural networks and statistical SRGMs.

  • PDF