• Title/Summary/Keyword: Step Perturbation

Search Result 93, Processing Time 0.02 seconds

PERTURBATION OF WAVELET FRAMES AND RIESZ BASES I

  • Lee, Jin;Ha, Young-Hwa
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.119-127
    • /
    • 2004
  • Suppose that $\psi{\;}\in{\;}L^2(\mathbb{R})$ generates a wavelet frame (resp. Riesz basis) with bounds A and B. If $\phi{\;}\in{\;}L^2(\mathbb{R})$ satisfies $$\mid$\^{\psi}(\xi)\;\^{\phi}(\xi)$\mid${\;}<{\;}{\lambda}\frac{$\mid$\xi$\mid$^{\alpha}}{(1+$\mid$\xi$\mid$)^{\gamma}}$ for some positive constants $\alpha,{\;}\gamma,{\;}\lambda$ such that $1{\;}<1{\;}+{\;}\alpha{\;}<{\;}\gamma{\;}and{\;}{\lambda}^2M{\;}<{\;}A$, then $\phi$ also generates a wavelet frame (resp. Riesz basis) with bounds $A(1{\;}-{\;}{\lambda}\sqrt{M/A})^2{\;}and{\;}B(1{\;}+{\;}{\lambda}\sqrt{M/A})^2$, where M is a constant depending only on $\alpha,{\;}\gamma$ the dilation step a, and the translation step b.

FREE SURFACE WAVES OF A TWO-LAYER FLUID OVER A STEP

  • Choi, Jeong-Whan;Whang, Sung-Im
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.1
    • /
    • pp.173-181
    • /
    • 2000
  • The objective of this paper is to study two dimensional steady gravitational waves on the interface between two immiscible, inviscid and incompressible fluids bounded above by a horizontal rigid boundary and below by a rigid step. A KdV equation for the first order perturbation in an asymptotic expansion can appear. However the coefficient of the KdV theory fails in that case. By a unified asymptotic method, we overcome this difficulty and derive a modified KdV equation with forcing. We find homogeneous steady solutions and present numerical solutions.

  • PDF

Beamforming for Downlink Multiuser MIMO Time-Varying Channels Based on Generalized Eigenvector Perturbation

  • Yu, Heejung;Lee, Sok-Kyu
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.869-878
    • /
    • 2012
  • A beam design method based on signal-to-leakage-plus-noise ratio (SLNR) has been recently proposed as an effective scheme for multiuser multiple-input multiple-output downlink channels. It is shown that its solution, which maximizes the SLNR at a transmitter, can be simply obtained by the generalized eigenvectors corresponding to the dominant generalized eigenvalues of a pair of covariance matrices of a desired signal and interference leakage plus noise. Under time-varying channels, however, generalized eigendecomposition is required at each time step to design the optimal beam, and its level of complexity is too high to implement in practical systems. To overcome this problem, a predictive beam design method updating the beams according to channel variation is proposed. To this end, the perturbed generalized eigenvectors, which can be obtained by a perturbation theory without any iteration, are used. The performance of the method in terms of SLNR is analyzed and verified using numerical results.

Flow-Induced Vibration Signal Analysis of the FIV Test Loop (FIV 시험루프의 유동기인 진동 신호분석)

  • Lee, Kang-Hee;Kang, Heung-Soek;Yoon, Kyung-Ho;Song, Kee-Nam
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.601-606
    • /
    • 2004
  • Vibration spectrums of the test loop according to flow conditions were analyzed in order to identify the sources of vibration at peak frequencies. While a flow condition of the sweep test was changed by varying pump rotational speed from 450 rpm to 1500 rpm by the step 150 rpm, midspan acceleration of the test section in width-direction and dynamic pressure perturbation in the test section were measured. Other sources of vibration due to the flow structure interactions, such as acoustic resonance, blade pulsing frequency and bellows wrinkles, were investigated. Pressure perturbation in the section and acoustic resonance due to branch pipe give major effects to the vibration of the test section in high frequency range of 1.5 kHz to 2.8 kHz.

  • PDF

System Condensation Technique-Based Inverse Perturbation Method of Damage Detection (시스템 축소기법이 적용된 역섭동법을 이용한 손상탐지)

  • Choi, Young-Jae;Lee, U-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.98-104
    • /
    • 2002
  • System condensation technique improves the efficiency of the inverse perturbation method of damage detection developed in the previous work. The technique is applied to transform the unmeasured DOFs to the measured DOFs. This approach makes it possible to eliminate the unmeasured DOFs, which accelerates the computational efficiency. The numerical instability problems due to the system condensation technique are also resolved by updating the transformation matrix for each step, and also by adopting the accelerated improved reduced system(AIRS) condensation method.

Nonlinear stability analysis of porous sandwich beam with nanocomposite face sheet on nonlinear viscoelastic foundation by using Homotopy perturbation method

  • Rostamia, Rasoul;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.821-829
    • /
    • 2021
  • Nonlinear dynamic response of a sandwich beam considering porous core and nano-composite face sheet on nonlinear viscoelastic foundation with temperature-variable material properties is investigated in this research. The Hamilton's principle and beam theory are used to drive the equations of motion. The nonlinear differential equations of sandwich beam respect to time are obtained to solve nonlinear differential equations by Homotopy perturbation method (HPM). The effects of various parameters such as linear and nonlinear damping coefficient, linear and nonlinear spring constant, shear constant of Pasternak type for elastic foundation, temperature variation, volume fraction of carbon nanotube, porosity distribution and porosity coefficient on nonlinear dynamic response of sandwich beam are presented. The results of this paper could be used to analysis of dynamic modeling for a flexible structure in many industries such as automobiles, Shipbuilding, aircrafts and spacecraft with solar easured at current time step and the velocity and displacement were estimated through linear integration.

MPPT Control of Photovoltaic using Variable IC Method (가변 IC 방법을 이용한 태양광 발전의 MPPT 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.27-34
    • /
    • 2012
  • This paper proposes variable incremental conductance(IC) algorithm for maximum power point tracking(MPPT) control of photovoltaic. The conventional perturbation & observation(PO) and IC MPPT control algorithm generally uses fixed step size. A small step size reduces a tracking error in the steady state but slows a tracking speed in the transient state. Also, a large step size is fast a tracking speed but increases a tracking error. Therefore, this paper proposes variable IC MPPT algorithm that adjust automatically step size according to operating conditions. To improve a tracking speed and accuracy, when operating point is far from the maximum power point(MPP), the step size uses maximum value and when a operating point is near from the MPP, the step size uses variable step size that adjust according to slope of P-V curve. The validity of MPPT algorithm proposed in this paper prove through compare with conventional PO and IC MPPT algorithm.

The MPPT Control oh Photovoltaic System using FVSS-PO Method (FVSS-PO를 이용한 태양광 발전시스템의 MPPT 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.20-26
    • /
    • 2013
  • This paper proposes the maximum power point tracking(MPPT) control of photovoltaic system using fuzzy based variable step size perturbation & observation(FVSS-PO) method. Conventional PO and incremental conductance(IC)MPPT control algorithm generally uses fixed step size. A small fixed step size will cause the tracking speed to decrease and tracking accuracy of the MPP will decrease due to large fixed step size. Therefore, the fixed step size can't be satisfying both the tracking speed and the tracking accuracy. This paper proposes FVSS-PO MPPT algorithm that adjusts automatically step size of PO by fuzzy control according to operating conditions. The validity of MPPT algorithm proposed in this paper prove through compare with conventional PO MPPT algorithm.

Nonlinear Dynamic Analysis of Space Truss by Using Multistage Homotopy Perturbation Method (시분할구간 호모토피 섭동법을 이용한 공간 트러스의 비선형 동적 해석)

  • Shon, Su-Deok;Ha, Jun-Hong;Lee, Seung-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.879-888
    • /
    • 2012
  • This study aims to apply multistage homotopy perturbation method(MHPM) to space truss composed of discrete members to obtain a semi-analytical solution. For the purpose of this research, a nonlinear governing equation of the structures is formulated in consideration of geometrical nonlinearity, and homotopy equation is derived. The result of carrying out dynamic analysis on a simple model is compared to a numerical method of 4th order Runge-Kutta method(RK4), and the dynamic response by MHPM concurs with the numerical result. Besides, the displacement response and attractor in the phase space is able to delineate dynamic snapping properties under step excitations and the responses of damped system are reflected well the reduction effect of the displacement.

Large amplitude free vibrations of FGM shallow curved tubes in thermal environment

  • Babaei, Hadi;Kiani, Yaser;Eslami, M. Reza
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.693-705
    • /
    • 2020
  • In the current investigation, large amplitude free vibration behavior of shallow curved pipes (tubes) made of functionally graded materials is investigated. Properties of the tube are distributed across the radius of the tube and are obtained by means of a power law function. It is also assumed that all thermo-mechanical properties are temperature dependent. The governing equations of the tube are obtained using a higher order shear deformation tube theory, where the traction free boundary conditions are satisfied on the top and bottom surfaces of the tube. The von Kármán type of geometrical non-linearity is included into the formulation to consider the large displacements and small strains. Uniform temperature elevation of the tube is also included into the formulation. For the case of tubes which are simply supported in flexure and axially immovable, the governing equations are solved using the two-step perturbation technique. Closed form expressions are provided to obtain the small and large amplitude fundamental natural frequencies of the FGM shallow curved tubes in thermal environment. Numerical results are given to explore the effects of thermal environment, radius ratio, and length to thickness ratio of the tube on the fundamental linear and non-linear frequencies.